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configuration is fez.s'.blte and desirable. By fea- 2 4e J eat ;hat it is pc:-
ro configure a number of (slave) minicomputers eac.. of which is driven by identcail
database management software and controlled by a (master) minicomputer for concur-
rent operations on the database spread over the disk storage local to the slave
computers. This approach to large databases may be desirable because only off-the-
shelf equipment of the same kind is utilized to achieve high performance without
requiring specially-built hardware and because identical database management soft-
ware is replicated on the slave computers. The approach makes the capacity growth
and performance improvement easy because duplicate hardware can be added and used
with repib oftwae.

- To study the feasibility, we research into the software architecture issues
and the hardware limitations of the master and slaves. We also research into the
replicable software for the slaves. Since these slaves are to be operated concur-
rently with corresponding single-channel disks, we can investigate the effects of
either single-query-and-mutliple-database-streams or multiple-queries-and-multiple-
S atabase-streams operation3 for performance imnrovement. To study the desirabili-
tv* we intend to consider the factors related to the problem of capacitv growth and
cost efrectiveness. T:he central issue may be wnetner we can realize a high-perfor-
mance and great-Capacity database management system with a multiplicity of mini-
mp ters, large number of single-channel disks and replica3le software cost-

ef ctively.
n this report, we present a new approach to the solution of database manage-

ment problems involving database growth and performance enhancement. A system
which uses a multiplicity of conventional minicomputers, novel hardware configura-
tion and innovative software design is presented. This extensible system tries to
achieve the ideal goal of having the performance (both response time and through-
put) be proportional to the multiplicity of minicomputers.

Our first effort is to identify the problems and bottlenecks involved in de-
veloping such an ideal system. Two major problems, one called the controller li-
mitation problem and the other the channel limitation problem are identified.?
Having identified these problers, our next effort is to systematically eliminate or
minimize the ill-effects of these problems. We have also identified a number of
other problems.

For studying the multiple back-end database system, we utilize queueing-models
and simulation. %ueueing models and simulation are used at different design staees
i4n order to aid the design process. Finally, ours is the only comprehensive design
of a multiple backeno system that covers all aspects of database management. Algo-
rithms for the four basic request, types (insert, retrieve, delete and update) algo-
rithms for aggregate operations, algorithms for access control, algorithms for con-
currency control, algorithms for database reorganization and algorithms for addi-
tion of new backends are all aralyzed and specified.

Because of its volume, the design and analysis is presented in two parts. In
the Part 1, we include four chapters. In Chapter I, we set our aim and scope of
the research. In Chapter II, we will make a survey of typical software-oriented
multiple backend systems in existence. We will point out the strengths and weak-
ness of these systems and make some recommendations so that the weaknesses point-
ed out for some of the systems can be avoided. One of the recommendations is on
data placement strategies. As a multiple-data-stream computer, the multi-backend
database system must be able to move data across the backends parallelly. Thus,
the placement of the database over separate disk systems for the corresponding
backends constitutes an importadt issue for study. We have proposedand apaiyzed a
number of strategies for data placement. We also select one for our system. In

Chapter III, we will select a data model and data manipulation language for imple-
mentation. We argue that the attribute-based model is the "superior" or "most ap-
propriate" data model. Our main argument is that prevailing data models and lan-
guages such as relational, network and hierarchical can be converted and translated
into the attribute-based model in a straightforward manner, thus, allowing the sys-
tem to support a number of models and languages. Accordingly, a simple data mani-

5.CU.I Y CLASSIFICATION or THIS PIGErIIon Des Fne.,.d)



ABSTRACT continued

pulation language based on this attribute-based model is chosen and pre-
sented. In Chapter IV, we elaborate on the process of request execution.
These are the requests for record retrieval, insertion, deletion and up-
date. Central to the process of request execution is the study of infor-
mation about the database. We propose a new method for record clustering
and a new strategy for directory management. In particular, the directory
response time, throughput and storage requirements are analyzed. A closed
queueing network model which incorporates a separate I/0 submodel for the
disk subsystem is used for this study.

The rest of the design and analysis will be included in Part II of
this report. The entire design ar~d analysis are based on analytical and
simulation studies. An implementation effort will be on its way. It is
hoped that we can test the system experimentally soon.

-1. jk
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1. INTRODUCTION

For solving database management problemg, many researchers f~abb79, Bane78,

Cope73, Schu,79, Wah8O] have proposed solutionf. utilizing special-purpose hard-

ware, known as database machines. However, it has not yet been demonstrated

that these database machines are cost-effective. A different approach to the

solution of database management problems may involve the use of conventional

hardware elements, perhaps in large number, with most of the database manage-

ment functions carried out in software. In other words, we may be searching

for hardware solutions without having considered all possible software solu-

tions to database management problems. In this dissertation, we emphasize the

software approach to the solution of database management problems.

1.1 The Goal

The goal is to investigate whether it is possible to use a multiplicity of

general-purpose processing and storage elements (specifically, minicomputers

and disk drives), novel hardware configuration and innovative software design

for achieving throughput gain and response-time improvement over conventional

database management systems. Ideally, the performance gains and improvements

should be proportional to the multiplicity of processing and storage elements

used.

If this ideal goal cannot be achieved, then the case for database machines

that use special-purpose hardware becomes very strong. On the other hand, if

it can be shown that such an ideal system can be obtained, then a cost-effective

way for high-volume and great-capacity database management may become more

readily available. Database machines may still provide better performance, but

they will be more expensive. Furthermore, database machines may represent a

distant solution whose time is not vet near.

In this dissertation, we will propose a hardware configuration of multiple

minicomputer systems and a design of a software database management system for

the configuration. We will1 use analytical techniques ai~d simulation studies to

determine how closely the ideal goal has been achieved by our proposed confi-

guration and design.

1.2 A Taxonomy of Existing Systems

One way to giVe some perspective to our work is by way of a taxonomy of

database systems and machines. By developing the taxonomy and indicating the

relative position of our work within this taxonomy, we may also explain the



-2-

similarities and differences of our work with that of others which are either

operational or being proposed. Finally, we will show the advantages of the

software approach over the machine approach. The taxonomy we developed is

shown in Figure 1.

At the highest level, we differentiate between systems which utilize a

central controller to simplify the control functions and those which do not

utilize a central controller. In general, it is the case that systems which

do not utilize a central controller are those where the database is geographi-

cally dispersed and the various computers have to be connected together by a

network. Examples of such systems are SDD-l [Roth8O], Distributed Ingres

[Ston76a], and Muffin [Ston79]. Also, generally speaking,

systems that do not use a central controller will have either partially or

fully duplicated databases. The need for having duplicate databases becomes

important in a geographically dispersed database where data transfers among

computers via a network are expensive. Hence, it is important to duplicate

data so that the data is very close to the point where it is actually needed.

In systems with duplicate databases, the concurrency control algorithms are

mostly complex and require large numbers of messages to be exchanged [Hsia8l].

This dissertation is not concerned with systems that do not utilize a central

controller and where the databases are duplicated, though this could very well

be an area for future research.

In developing our taxonomy further, we divide the systems with central con-

trollers into two classes, namely, the hardware-oriented systems and the soft-

ware-oriented systems. Hardware-oriented systems (also called database machines)

are those which typically use special-purpose hardware to perform a large number

of the database management functions. These systems [Bane78, Cope73, Schu79]

process the data 'on the fly' while the data is being read from the disk tracks.

Special-purpose processors which are associated with blocks of secondary sto-

rage are utilized to perform on-the-fly processing. Our taxonomy is, of course,

subjective in defining a hardware-oriented system in terms of the number of the

database management functions being accomplished in hardware. What is a 'large'

number of the database management functions? Clearly, there will be some sys-

tems which fall in the borderline between hardware-oriented and software-oriented

systems. Note that we do not consider a database management system such as

DIRECT [Dewi78] to be a hardware-oriented system even though it is often referred

to as a database machine in the literature. This is because the only special-
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Figure 1. A Taxonomy of Database Management Systems
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purpose hardware in DIRECT is a crossbar switch. All the database management

functions in DIRECT are performed by software in conventional processors.

Hence, by our classification, DIRECT is a software-oriented database management

system.

Software-oriented systems are those which do not use a slgniflcant amount

of special-purpose hardware and where most of the functions of database manage-

ment are done in software. Such systems may be further subdivided into three

categories as conventional database management systems, single back-end database

management systems and multiple back-end database management systems. In a

conventional database management -system, all of the major software components,

such as the operating system, the database management system arnd user (applica-

tion) programs, are executed in a single computer system which has direct access

to the database stored in the secondary memory. Performance upgrades in a con-

ventional database management system are usually costly and disruptive. For

instance, it may be necessary to add large memory modules or to incorporate more

channels or to replace the central processor with a more powerful model. Such

upgrades often require major effort so that it is well accepted that conventional

database management systems are not easily extensible. In this context, we de-

fine extensibility of a database management system as the capability of the sys-

tem f or upgrade with

(1) no modification to existing software,

(2) no additional programming,

(3) no modification to existing hardware and

(4) no major disruption of system activity when additional hardware is

being incorporated into the existing hardware.

A new configuration for database management called the back-end configura-

tion was proposed in [Cana74]. Excellent descriptions of the back-end concept

and its advantages and disadvantages are given in [Lowe76, Mary8O] and will not

be reDeated here. Briefly, this configuration utilizes two computer systems -

a host and a back-end. The database management functions are implemented on

the back-end which has exclusive access to the database on secondary storage

devices. We shall refer to such a system as a single back-end database manage-

ment system, since multiple back-end systems have also been proposed [Lowe76,

Ston78, Dewi781. Among the advantages claimed of single back-end database

management systems is that performance upgrades are less disruptive, more manage-

able and on a smaller scale than in a conventional database management system.
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First, upgrading the back-end requires no modification to application programs

since they are executed in the host. Furthermore, the back-end separates the

characteristics of the secondary storage devices from the characteristics of

the host. Thus, new storage technology may be employed without changing hard-

ware or software in the host. However, single back-ends have the disadvantage

that, ultimately, performance upgrades will require replacement of the back-end

and this may entail software modifications and hardware disruption.

The next logical step in the evolution of database management systems is

the multiple back-end system approach as suggested by a number of researchers

[Bane78, Dewi78, Lowe76, Ston78]. This approach employs multiple computer sys-

tems for database management with a scftware-oriented system and a centralized

controller. A few words regarding the differences between our system and other

software-oriented multiple back-end systems with controllers [Lowe76, Ston78,

Dewi78] is now in order. The work of (Lowe76] did not represent the design of

any specific database management systEm. That work was essentially in the na-

ture of an idea for an architecture wLich others could utilize to design systems.

The works of [Dewi78, Ston78], however, are actual designs. The difference be-

tween our work and that of these two researchers are explained at a very detailed

level in Chapter2. Here, we satisfy ourselves with some differences in terms of

overall objectives. None of the above-mentioned researchers emphasize the ex-

tensibility of the multiple back-end approach nor do they seem very concerned

about designing their respective mult::ple back-end systems to make them exten-

sible. In [Lowe76], for example, the riultiple back-end system is considered from

the viewpoint of enhanced reliability over single back-end systems. in [Dewi78,

Ston78], however, the emphasis is on the general notion that multiple back-ends

may provide greater throughput than single .back-end systems. However, we be-

lieve in more specific findings. In other words, we believe that there are de-

signs which can achieve the ideal goal of the throughput improvement being pro-

portional to the multiplicity of back-ends. None of the above-mentioned sys-

tems has revealed such a design. We, on the other hand, reveal a design of a

multiple back-end system which could lead to a response time being inversely

proportional to the multiplicity of back-ends. It is also our belief that our

multiple back-end system is extensible. That is, new storage devices and back-

ends may be added to the configuration to improve its storage and performance

capabilities without the need of re-designing and re-programming of the soft-

ware and without major disruption of the existing hardware. We will be inter-
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e.s'ted In multiple back-ends from the viewpoint of extensibility to improve

response time and throughput. Furthermore, we will not utilize any special-

purpose hardware in our system.

As a result of the extensible nature of our system, we make the following

claim about our system. Consider a user of our database management system who

finds that the system is saturated due to database growth and transaction in-

crease. The user would like to upgrade the present system. The designers of

database machines and conventional database management systems would offer the

user the alternative of using their database machines and their systems, re-

spectively, thereby replacing the existing software and hardware. Instead, we

off er the user a different alternative. We do not ask the user to replace the

existing software, since existing software is extensible and requires only a

system generation. We also do not ask the user to replace the existing hard-

ware. We merely ask the user to add identical hardware; consequently, when

and if the need to upgrade the system arises, the user simply adds more hard-

ware and uses the same existing software for performance gain and capacity

growth.

The presentation of the taxonomy and the place of our system in that tax-

onomy has made clear some of the advantages and unique characteristics of the

software approach to database management system design which we intend to fol-

low. Two other considerations confirm that this may be a viable alternative

to follow. We may term these as hardware considerations and software consi-

derations. Both of these are considered in terms of our software approach and

the database machines approach. First of all, from a hardware point of view,

the conventional processors and disk drives will be cheaper than special-purpose

processors and disk drives which may be needed in a database machine. From a

software point of view, software for a large number of processors may be needed

in this approach. However, novel software design may be used to ensure that

the software in each of the minicomputers is identical. Thus, the software com-

plexity is not proportional to the multiplicity of minicomputers. Furthermore,

we are trying to support large databases that evolve and grow over time. This

growth process is generally gradual. However, performance upgrades are necessary

from time to time for such database growth. We have already indicated that our

particular approach to database management systems can lead to extensible systems

and improved performance to accomodate the growth and the evolution. Thus, from

a software, hardware and database growth point of view, the software approach
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using multiple back-ends seems preferable to the database machines approach.

Thus, such an approach is certainly worth investigating and that is the focus

of this dissertation.

1.3 Design Issues To Be Studied

Before an extensible system can be developed, a number of issues related

to multiple back-end systems must be resolved. None of the researchers men-

tioned above have provided solutions to all these issues, though some research-

ers nave proposed solutions to a subset of them. Let us enumerate below the

various issues to be considered in the design of a aultiple back-end system.

The issues may be divided into three broad categories as hardware issues, sys-

tem issues and software issues.

1.3.1 Hardware Issues

A. The Back-end Interconnection

The questions to be resolved here are, "What is the optimnal way of inter-

connecting the back-ends together?"', and "'What is the optimal way of connecting

the host to the back-ends?" In answering these questions, we must recall that

the throughput of multiple processor systems increases significantly only for

the first few additional processors. At some point, the throughput actually

begins to decrease with each additional processor. Examples of this phenomenon

are documented by [Chu8O] and [jenn77]. This decrease in throughput is due to

excessive interprocessor communication during the execution of a single task

which causes a saturation effect [Chu781. We must try to avoid this excessive

interprocessor communication in designing an optimal multiple back-end system.

B. The Database Store Interconnection

Another issue is the question of which secondary devices should be con-

nected to which back-ends. For instance, if two back-ends and two disk drives

are given, would the configuration shown in Figure 2a where each back-end is

connected to exactly one disk drive, be superior to the configuration of Figure

-2b where each back-end is connected to both disk drives? The latter configura-

tion is more flexible since any back-end may be employed to execute any user

request. However, it is more expensive in terms of hardware complexity. Fur-

thermore, if two back-ends can access the same data, there exists the problem

of deciding which back-end should be allowed to access a particular data item.
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Such a configuration also complicates the concurrency control issue, cwince 3ne

back-end may now read and update the same data being read and possibly updated

by another back-end.

1.3.2 System Issues

A. The Data Base Placement

Here, the issue to be resolved is regarding the best way of placfing the

files constituting the database across the various back-ends in order zo

achieve the maximum amount of parallel access for the system during read ani

write operations. In other words, how should the database be partitioned?

As much as possible, we should try to ensure that the records constit%,ting the

response set to a user request are not stored at a single back-end. Rather,

these records in the response set should be distributed evenly across the

various back-ends. Such a placement policy should lead to maximal paiallel ac-

cess. Techniques for achieving such a placement policy must be found.

B. The Execution Mode

We ask whether the multiple back-ends should execute in a single-instriction-

stream-multiple-data-stream (SIMD) fashion or in a multiple-instruction-stream-

multiple-data-stream fashion (MIND). That is, should each of the back-ends be

executing the same request but on different data (SIMD), or should the back-

ends be executing in an asynchronous fashion (MIMD). For example, the results

of our study in fteno80] have shown us that MIMD configurations need not always

be superior.

C. Directory Structure

Many database management systems also have a secondary body of information

(often referred to as the directory) which is used to decrease the search space

(and therefore time) of the data base. Issues to be resolved here are whether

a directory is indeed necessary and if it is necessary, then what form should

it take? Should we use the inverted list organization, the multilist organiza-

tion, or any of the whold spectrum of alternatives as elucidated in [Hsia7O]?

D. The Directory Placement

Having decided on the nature of the directory, we next need to answer the

following question. Where is the best place to store the directory? Should it
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be stored at the controller, in one of the back-ends, or in all of the back-ends?

Should it be duplicated or partitioned? The tradeoffs to be considered are

those of storage requirements versus reliability, system throughput and re-

sponse time.

E. The Security Issue

An important issue that must always be considered in the design of a data-

base system is how security is to be enforced. That is, the question of de-

ciding, in a multi-user environment, who should have what access to which data.

F. The Data Model

Arty database management system must decide what data model, e.g., rela-

tional, network and hierarchical, it will support. This decision must be made

irrespective of whether we have a conventional system, a single back-end sys-

tem or a multiple back-end system. However, it is possible that some issues

peculiar to multiple back-end systems may impact our choice of data model. For

examplit, it will be shown that it is easier to partition the database if it is

repres,!nted in one kind of data model and not in the other kind. The parti-

tioning criteria is relevant only in the context of multiple back-end database

mr'anagemnent systems.

G. Th3a Data Manipulation Language

Finally, we must decide upon a language which can be used by the users to

manipulate the database in an easy fashion. The choice of a data manipulation

language will be closely related to the chosen data model.

1.3.3 Software Issues

A. The Degree of Concurrency

We are designing an architecture that supports multiple users concurrently.

At each back-end, we have the choice of processing the requests from these multi-

ple users in an interleaved manner or one at a time. If the requests are not

interleaved, then the software in the back-end is simplified. However, the

price to he paid in terms of increased user response time and low back-end uti-

lization may be too high. For this reason, we may want to support concurrent

request processing at each back-end.



B. Consistency Control and Deadlock Avoidance

If each back-end is to handle multiple requests and multiple transactions,

then algorithms must be developed to ensure consistency of the database in the

presence of multiple transactions. These algorithms must ensure that each

transaction behaves as if it were the only one in the system. Consistency

control algorithms may or may not permit deadlocks to occur. If deadlocks are

permitted to occur, other algorithms must be developed for detecting and re-

covering from deadlocks.

1.4 Terminology

We wish to end this section with a brief look at terminology. Throughout

the remainder of this report, we will refer to the multiple back-end system

which we are attempting to design as the multi-mini database system (MDBS). In

MDBS, we will refer to one of the minicomputer systems as the controller which

controls the actions of the rest of the minicomputer systems known as back-ends.

The throughput of NDBS is defined as the average number of user (program) re-

quests executed by the system in a second. Throughputs may also be defined for

various request classes by a straightforward extension of the definition of

throughput. The response time of a request in MDBS is the time between the ini-

tial issuance of the request by a user (or a user program) and the final receipt

of the entire response set of this request by the user (program).

1.5 Contributions of Research

In this dissertation, we present a new approach to the solution of database

management problems involving database growth and performance enhancement. A

system which uses a multiplicity of conventional minicomputers, novel hardware

configuration and innovative software design is presented. This extensible sys-

tem tries to achieve the ideal goal of having the performance (both response time

and throughput) be proportional to the multiplicity of minicomputers.

Our first effort is to identify the problems and bottlenecks involved in de-

veloping such an ideal system. Two major problems, one called the controller limi-

tation problem and the other the channel limitation problem are identified. Having

identified these problems, our next effort is to systematically eliminate or mini-

mize the ill-effects of these problems. We have also identified a number of other

problems.

For studying the multiple back-end database system, we utilize queueing models

and simulation. Queueing models and simulation are used at different design stages in
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order to aid the design process. Finally, ours is the only comprehensive de-

sign of a multiple back-end system that covers all aspects of database manage-

ment. Algorithms for the four basic request types (insert, retrieve, delete

and update), algorithms for aggregate operations, algorithms for performing re-

lational join, algorithms for enforcing security, algorithms for enforcing con-

currency conitrol, algorithms for database reorganization and algorithms to be

executed at the addition of a new back-end are all analyzed and completely

specified.

At a more detailed level, the following contributions may be cited. A

solution to the task partitioning problem for multiple back-end database sys-

tems has been presented. Unlike previously proposed solutions such as the one

in [Dewi781, our solution minimizes message traffic among multiple back-ends

thus improving response time and throughput. Experiments have indicated that

the proposed solution is extremely effective for a broad range of back-ends.

Also, for the first time, the importance of a broadcast capability in multiple

back-end database management systems has been clearly demonstrated. More im-

portantly, the very negative impact of not having a broadcast capability has

also been demonstrated. Experiments have shown that for systems which do not

have a broadcast capability, the response time will improve only with the first.

few back-ends. After that, the response time actually begins to increase with

each additional back-end.

A new and simple algorithm for performing joins on a bus-type architecture~

is presented and thoroughly analyzed. Unlike other studies, this analysis not

only includes 1/0 time, but it also incorporates the overlap of 1/0 and join

processing. Furthermore, the effects of main memory size on join time are also

included in the analysis. Similar analyses of other existing algorithms for

join processing are also made and lead to some surprising results. Some other

algorithms are actually shown to perform worse with increasing number of back-

ends:

The algorithms presented for aggregate operations are not very different

from those presented for other systems [Bora8O, Schu79]. What is different is

the analysis of these algorithms. Once again, a model which incorporates 1/O

and CPU processing overlap is used. Furthermore, for the first time, an optimum

value for the number of back-ends that may participate in an aggregate operation

is derived.

Eight schemes are presented for directory management in the new system.
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The directory management schemes are different from those for any other svste.m.

These schemes are compared in terms of system response time, throuhpti and sto-

rage requirements. A queueing model is used for this purpose. To the author's

knowledge, this is the first time that a system has chosen a directory manage-

ment policy based on analysis using queueing theory.

The queueing network model used is a closed queueing network model. This

model incorporates a separate I/O submodel for the disk subsystem. The I/O sub-

model that we developed was simpler than other existing models FBard8l, Gotl73,

Fran74] of disk subsystems in that we were able to obtain a closed form solution

for the response tine. Our proposed I/O submodel also differs from all other

models for disK subsystems in that ar.alysis is made for bulk arrivals. Our

analysis assumed bu]k arrivals because of the fact that MDBS allows the user to

issue requests in a query-based language. As a result, a user query would re-

quire a number of records (and, hence, a number of disk tracks) to be accessed

at the same time. Finally, a unique iteration technique is employed in order

to incorporate this I/O submodel into the overall closed queueing network model.

The data placerient policy is based on the work of [Wong7l, Roth74j. However,

it differs from all these methods in many important respects which will be dis-

cussed in Chapcer 4. Very briefly, it differs from their work because we are

trying to minimize response time in a multiple back-end system and they were in-

terested only in single computer systems. Experiments have been conducted which

demonstrate the effectiveness of our placement policy. Certain theoretical re-

sults of our optimal placement policy are also presented.

The concurrency control scheme is executed at each back-end rather than at

the controller. This is only possible because of the peculiarity of our archi-

tecture. In a system like DIRECT [Dewi78], concurrency control algorithms have

to be run in the controller. In such a system, the performance of concurrency

control algorithms cannot be improved by employing more back-ends. The design

of our system has allowed us the flexibility to improve the performance of con-

currency control by utilizing more back-ends. We define, for the first time, a

term called monolithic consistency to describe the kind of consistency required

in a partitioned database (just like inter- and intra-consistency are needed in

a centralized database and inter-, intra- and mutual consistency are needed in

a distributed database). A solution which preserves monolithic consistency is

presented. Our solution is unique in a number of ways. First, it advocates

the use of four lock modes, instead of the traditional two lock modes. By se-
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parating the insert and delete locks from the update locks, we achieve a

greater degree of concurrency. Another contribution is the identification of

permutable and compatible requests for a high-level predicate-based query

language (and not for a low-level one as in [Gard77]). At a practical level,

a method for enforcing locking when using a predicate-based query language is

proposed. Unlike [Eswa76] which uses predicate locking, our scheme is much

simpler. Unlike [Jord8l], the scheme allows predicate-based updates. Unlike

both [Eswa76] and fJord8l], the scheme is deadlock free. Hence, it cannot

suffer from the 'starvation problem' where transactions are rolled back infi-

nitely and are not guaranteed to complete.

The work on access control and security is based on the work in [MCca75].

However, it differs from [MCca75] in that the method of specifying access pri-

vileges is simplified and the security atoms (or clusters) are formed in a dif-

ferent way. We are also able to enforce protection down to the attribute level.

A further extension allows for the protection of access agair.st statistical re-

quests. The security-related tables are stored in the multip'le back-ends. Each

back-end only needs to store a subset of the tables. As a result, the response

tirne and throughput of the entire system is improved. Also, for the first time,

we present a comparative study of this security enforcement scheme with others

in the literature. Finally, we are able to make the schemes verifiable [Down771.

That is, by guaranteeing the correctness of a small portion of the database man-

agement system, we are able to guarantee the correctness of i:he access control

mechanism. The scheme borrows from the ideas of [Down77]. However, [Down771

is a verifiable security mechanism which does not support value-dependent pro-

tection. In [Down77], it is speculated that a verifiable mechanism for value-

dependent access can not be found. Our scheme contradicts this claim. One

final unique feature of our security mechanism is that it is the only one where

the refusal of some requested access is guaranteed to lead to a saving in terms

of reduced number of accesses to the database store.

The rest of this dissertation will be organized as follows. In Chapter II,

we will make a survey of typical software-oriented multiple back-end systems in

existence. We shall point out the strengths and weaknesses of these systems

and make some recommendations for MDBS so that the weaknesses pointed out for

some of the systems can be avoided. In Chapter III, we argue that the attribute-

based model is the "superior" or "most appropriate" data model. Accordingly, a

simple data manipulation language based on this attribute model is chosen and
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presented formally. In Chapter IV, we elaborate on the database placement

strategy which was proposed in Chapter II and which was shown to be optimal.

Furthermore, algorithms for record retrieval, insertion, deletion and update

which make use of this strategy are presented. In Chapter V, we design al-

gorithms for concurrency control which are deadlock free. In Chapter VI, we

deal with security-related issues in the MDBS. In Chapter VII, we present a

theoretical treatment of the optimal interval at which the database of MDBS

should be reorganized in order to take the advantage of the database plazement

strategy. Also presented is a theoretical treatment of the optimal interval

at which additional back-ends may need to be added to the system. At this

point, the details of MDBS will have been completely specified. Chapter VIII

is then a simulation model of MDBS. Results showing the expected performance

of MDBS as a function of the number cf back-ends are presented in these sec-

tions. In Chapter IX, we will presernt our final conclusions.
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2. A SURVEY OF TYPICAL SYSTEMS AND A STUDY OF SYSTEM ISSUES FOR DESIGN
DECISIONS

In this section, we shall survey some of the existing multiple back-end

systems. Their relative merits and demerits will be discussed. As we had

indicated in Chapter 1, our interest is in software-oriented, multiple back-

end systems with a controller. We shall,therefore, include neither distri-

buted database systems such as SDD-1 [Roth80] and Distributed INGRES [Ston76a]

nor hardware-oriented systems such as DBC [Bane78b, Kann77b, Kann78]. Based

on the findings of the survey, we shall make some design decisions for MDBS.

Obviously, in our design for MDBS, we will seek to avoid the weaknesses of the

systems surveyed.

The systems that we shall survey in this section are RDBM [Auer80], DIRECT

[Dewi78], Stonebraker's machine [Ston78] and DBMAC [Miss8O]. Even though many

of these systems bear titles which include the word 'machine', they all fall

into the category of software-oriented, multiple back-end systems. These four

systems do not form a comprehensive list of all systems that fall into this

particular category. However, we feel thE.t these four systems are typical of

existing software-oriented, multiple back-end systems.

This survey is an important and integral part of the dissertation. We are

not presenting,. in this survey, all the details of each of the systems surveyed.

Rather, for each system surveyed, certain key observations are made. The idea

is to point out the problems of these systems so that they will be used as a

lesson for better designing of MDBS.

2.1 A Survey of Typical Software-Oriented, Multiple Back-ends

2.1.1 RDBM - A Relational Database System

The REBM consists of three major components as shown in Figure 3

(a) a mass storage device with its own storage manager,

(b) a multiprocessor system consisting of special-function processors

working on a large, comon main memory, and

(c) a general-purpose minicomputer controlling the different hardware

components and performing the preprocessing of the requests.

We shall review each of these three major components in the following.

The mass storage device consists of conventional secondary memories, eztended

by a block bu Fer, the secondary memory manager and several processing elements,

known as restriction and update processors (RUPs). A retrieve request is exe-
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cuted as follows in RDBM. The pages relevant to the retrieve request are

identified and read fram the secondary memory to the secondary memory buffer.

The records from the biaffer are then sent, one by one, to the next available

* RUP. The RUPs examine the records to determine if they satisfy the criteria

of the retrieval request. The RUPs forward the final set of records to the

main memory. We note that, at any one time, all the RUPs are executing the

same instruction (retrieval request) but on different data (records). A num-

ber of observations may be made on this architecture.

A. The Problem of Channel Limitations

First of all, we observe that some of the relevant pages in the secondary

memory to be searched on are already in the main memory. This is because the

RUPs can only examine records in the secondary memory. Secondly, it is clear

that the ultimate limitation in throughput is the rate at which records can be

read from the secondary memory to the RUPs via the interconnecting channel.

Thus, after a certain point, the use of additional RUPs will not improve the

rate at which retrieve (update, delete) requests are executed by the RDBM.

We call this problem the channel limitation problem. We would prefer a system

which is not li-ited hy the speed of the channel. In other words, the through-

put will not be limited by interconnections among the secondary store, the pro-

cessors and the main memory.

B. The Problem of Software Specialization

The multiprocessor component of RDBM consists of a number of special-

function processors - one to perform relational joins, one to perform sorting

of retrieved records, etc. In such a system, the workload distribution among

the special-function processors could be uneven. For instance, if a large num-

ber of user requests requires joins to be performed, but none of these requests

requires any strting to be performed, it is clear that the sort processor will

be under-utilized whereas the join processor will be over-utilized. Thus, the

best utilization of the multiple processors is not being obtained. Furthermore,

such a system may be unreliable. For example, the loss of the join processor

will render the RIDIM incapable of doing joins. This is known as the software

specialization problem.

A system which can continue to perform all the database management functions

(perhaps, in a degraded mode) in spite of the loss of a processor is to be pre-
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ferred over a system where the loss of a database management function means

a permanent denial of that function to the user. Therefore, to overcome thi

unreliable operation, a system should not have special-function software in

the various processors. Rather, it should have general-purpose software in

the various processors so that all of them are capable of doing all the data-

base management functions like sorting, joining, etc. In this case, we can

also expect a more even distribution of the workload among the processors.

In fact, the best possible solution would be to have identical software in

all the processors. Then, additional processors may be added to the 3vstem

with the greatest ease because no new software has to be designed for the a l-

ditional processors.

C. The Problem of Controller Limitation

The minicomputer in RDBM controls the actions of the various hardware

elements in processing a user request. Furthermore, it performs the prepro-

cessing and analysis of the user request to determine the pages in the secol-

dary memory to be retrieved, deleted, etc. This makes the speed of the mini-

computer a limiting factor to the throughput of the RDBM. To explain this

point, consider, for simplicity, that all user requests require 10 seconds 3f

minicomputer CPU time irrespective of the number of back-ends. This means

that RDBM cannot support a throughput rate which is greater than six requests

per minute, irrespective of how many processors it uses to speed up cperatibns

like join and sorting. We shall, henceforth, refer to this problem as the

controller limitation problem.

This problem may also be examined from the viewpoint of the response time.

The ideal goal is to achieve a system where the response time improves in pro-

portion to the number of back-ends used it. the system. Here, the response time

may be considered as the sum of the controller execution time and the back-end

execution time. Addition of more back-ends can reduce the back-end execution

time, but it cannot reduce the controller execution time which is a constant

independent of the number of back-ends. Thus, the controller execution time

must be kept to a minimum, if we are to achieve our ideal goal. This leads us

to the conclusion that all major tasks must be performed in the back-end pro-

cessors in a parallel fashion and that the controller must perform minimal work.

So, we would like the preprocessing of user requests to be performed by the

multiple back-ends in such a way that if there are n back-ends, the total time
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for preprocessing is speeded up by a factor of n.

D. The Problem of Data Model Limitation

RDBI1 supports the relational model of data. Thus, in order to support

ohrdata models such as the hierarchical and the network model, it will be

necessary to convert the hierarchical and network database to a relational

one. Furthermore, requests issued in a hierarchical and network data manipu-

lation language must be translated to requests in the relational data manipu-

lation language. Some researchers have solved the translation problem parti-

ally by translating a subset of the network model into the relational model

[Kat.z80] . However, solutions to the problem of translating the entire network

model into relational model are not at hand. Thus, the fact that RDBM only

supports the relational model constitutes a limitation of RDBM. This is the

data model limitation problem. We would prefer to have a data model that is

canornical. By a canonical model, we mean that the model allows the entirety

of any prevailing data model (i.e., relational, hierarchical and network) to

be i:ranslated into the data model.

2.1.2 DIRECT - A Multiple Back-end Relational System

As a relational system depicted in Figure 4, DIRECT [Dewi78] consists of

four~ main components: a controller, a set of query processors, a set of CCD

memory modules and an interconnection matrix between the set of query proces-

sor!; and the set of memory modules. When the controller receives a user re-

quest, it will determine the number of query processors which should be assigned

to execute the request. If the relations referenced by the request are not in

the CCD memories, the controller will page them in before distributing the re-

quest to each of the query processors selected for its execution.

A retrieve request is executed as follows. First, the controller deter-

mines the optimal number of query processors that must be utilized to execute

the request. This depends upon the size of the relat-ons involved in the re-

quest, the priority of the request and the number of currently available pro-

cessors. The contrcller then sends the request to each selected processor

along with information about the relations to be referenced. The controller

also creates a task which waits for a completion signal from each query pro-

cessor. When all query processors have signalled, the waiting task will trans-

mit the results of the request to the user. For example, let us assume that
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only a single relation is referenced in the retrieve request. Then, each pro-

cessor will request the controller for a page of this relation. The controller

will search the pages of the relation from the secondary storage, place the

pages in the CCD memory and pass the CCD memory address of the requested page

to the processor. The query processor may now access the page using the inter-

connection matrix and perform the necessary work on the page. Finally, the

query processor creates a temporary relation containing the selected tuples.

This temporary relation will eventually be given to the user.

A. The Problems of Hardware Specialization

We see that DIRECT overcomes the channel limitation problem by use of the

interconnection matrix. Strictly speaking, this limitation will be overcome

only if each query processor can access any part of the secondary memory. This

is not possible in DIRECT, since, only the controller can access the secondary

disk memory. The use of the CCD memories as a large cache for the secondary

disk memory alleviates the channel limitation problem to a large extent. Iron-

ically, the biggest drawback of DIRECT is its need to use an interconnection

matrix whose cost increases as the product of the number of query processors

and the number of CCD page frames. While the switching delays of this inter-

connection matrix do not significantly affect the time to access a page of CCD

memory for small number of processors and page frames, such switching delays

may, nevertheless, become significant in a full-scale system with many query

processors and page frames. Another problem with the interconnection matrix is

that it is not easily extensible. For example, the addition of a new CCD page

frame will require modifications to the selector interfaces at each query pro-

cessor, whereas the addition of a new query processor will require modifica-

tions to the interfaces at each CCD page frame. Finally, the interconnection

matrix is not a conventional hardware element because it must be specially de-

signed. This is the hardware specialization problem.

B. The Problems of Control Message Traffic and Controller Limitation

Each time a new page is needed by a query processor, a message must be sent

to the controller and a message must be received from the controller. These

two messages may be considered as an overhead for the task of reading a page

from the CCD memory. It has been estimated that about 8,000 instructions are

needed [Bora8l] to send a message from the controller to a query processor or
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vice versa. Thus, approximately 16,000 instructions have to be executed before

a page may be read from the CCD memory. Assuming that an instruction takes I

usec to execute, 16 msecs of overhead are associated with the task of reading a

page from the CCD memory. The task of reading a page from the CCD memory only

takes 12 msecs [Dew178]. Thus, the overhead associated with the task of reading

a page from secondary memory is of 57%. The above calculation does not include

the time taken by the controller to search the relation tables [Dewi78] for the

purpose of determining the next page nor does it include the queueing delays

suffered by the two overhead messages. Hence, the overhead for the task of

reading a page from CCD memory is likely to be greater than the estimated fi-

gure of 57%.

Also, the present configuration of DIRECT does not permit broadcasting of

requests to the query processors from the controller. As a result, a request

which is to be executed by, say, three query processors whould require three

separate messages to be sent from the controller to the query processors and

this would require approximately (8,000 x 3 =) 24,000 instructions and take up

about 24 msecs of controller time. Thus, there is the problem of control

message traffic.

Finally, we point out that DIRECT most definitely suffers from the con-

troller limitation problem. That is, the controller is actively involved in

many phases of the execution of a request - in the query analysis phase, in

the concurrency control operations, in getting the next page, etc. - so that

the throughput of DIRECT will be limited by the speed of the controller in the

execution of its various tasks.

C. The Problem of Multiple Request Execution

The DIRECT approach does not allow a query processor to support concurrent

execution of multiple requests. For instance, consider that while executing

a retrieve request, a query processor requests a page which is not in the CCD

memory. Then, the query processor is idle until the page is loaded into a

page frame in the CCD memory. Such idling could have been avoided, had the

query processors been allowed to concurrently execute multiple requests. If

each query processor were allowed to concurrently execute multiple requests,

more complex software would be required in the query processors. This is the

argument used by the designers of DIRECT for not allowing concurrent execution

of multiple requests in the query processors. While we understand the ratio-
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nale behind this argument, we feel that that was not an alternative. In a

multi-user system, the response time is of the utmost importance. By

allowing concurrent execution in the query processors, we can improve the re-

sponse time. Furthermore, a large fraction of the requests is likely to be

I/O bound, and the use of concurrent request execution will serve to increase

the utilization of the query processors (i.e., the back-ends). Even if much

of this anticipated utilization is spent in overhead activities such as task

switching, concurrent request execution is likely to provide a performance im-

provement.

In a system like DIRECT, concurrency control is necessary in spite of the

fact that individual query processors do not support concurrent request execu-

tion. This is because all the query processors are allowed to access all the

pages of the CCD memory. Hence, two query processors may try to update the

same page unless concurrency control is enforced. It will be shown that con-

currency control is unnecessary, if the back-ends do not support concurrent

request execution. Concurrency control in DIRECT is maintained by means of

lock tables residing in the controller and requires a number of messages to be

exchanged between the controller and the query processors. Furthermore, lock-

ing is done at the granularity of a relation and this may reduce the degree of

concurrency achievable in DIRECT. As long as no indices are-maintained and

each request requires the retrieval of entire relations (as in the case of

DIRECT), it is difficult to have a finer locking granularity. This is because the

two-phase lock protocol [Eswa76] requires that no lock be released until the

end of a transaction. Thus, the lock on the first page of a relation cannot

be released until the lock on the last page of that relation is set. On the

other hand, a non-two-phase lock protocol may have to be used, if a better

locking granularity is to be achieved.

Another drawback of DIRECT is that after a query processor completes exe-

cuting a request, it cannot imediately start executing the next request. This

is because no processor maintains a queue of waiting requests. only the con-

troller maintains such a queue. Consequently, a query processor must first wait

until the results of the previous request are received at the controller and

then wait till the controller has shipped the next request to the query pro-

cessor. Two messages of 16 msecs are required between the end of execution

of one request and the start of execution of the next. We would prefer to have

a queue of waiting requests at each back-end. While such a strategy is not ex-
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pected to increase the throughput or decrease the response time dramatically,

it will certainLy be an improvement over the present strategy of DIRECT. Be-

sides the savings of sixteen msecs we had mentioned, the overhead of main-

taining queues has been removed from the controller and passed on to the back-

ends. This should contribute to an alleviation of the controller limitation

as well. The aforementioned difficultiee characterize the problem of multiple

request execution.

D. The Problem of Data Model Limitation

Another criticism of DIRECT is the fact that it supports only the rela-

tional model of data. As has been previously pointed out, more research needs

to be done before hierarchical and network models may be supported by such a

system.

In DIRECT, entire relations must be retrieved in order to answer queries.

On the other haad, a system which uses index information (like inverted lists

on selected attributes) will be able to retrieve relevant portions of relations

and save valuabLe secondary storage access time.

2.1.3 Stonebra~er's Machine - A Distributed Database System

A schemati: of this system is shown in Figure 5. It consists of a single

controller and nultiple back-ends. Each back-end is connected to a single disk

drive [Ston78]. The controller preprocesses the user queries and performs parsing

and decomposition of user queries into requests that access only a single rela-

tion. Directory information is stored in one of the back-ends which is desig-

nated as the special back-end. After decomposing a query, the controller acces-

ses the directory in this special back-end to determine the back-ends which must

be utilized to execute the requests and then sends the requests to these back-

ends. After the back-ends return the results of the query to the controller,

the controller outputs the results to the user that issued the query.

A. The Problem of the Back-end Limitation

The first thing we note about the distributed database system is that the

channel limitation problem does not exist. This is because the multiple back-

ends may read data from the secondary storage simultaneously via the multiple

channels. However, unlike DIRECT, a request must be executed by one or more

specific back-ends. For instance, if a request requires retrieval of informa-

tion stored in the disk drive attached to the first back-end, only this back-
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end may be employed in order to execute this request. Hence, consider tiie fol-

loving situation. Two requests are issued one after-another; both require access

to a relation stored entirely at the disk drive attached to the first back-end.

Then, the second of these requestsi must wait until the first request completes

execution even though many of the other back-ends in the system are idle. This

characterizes the back-end limitat:ion problem.

B. The Problem of the Specialized Back-end

The placement of the directo-cy at a specific back-end seems quite unwarrented.

Such a scheme requires that, f or every request, messages must be sent to and re-

ceived from the special back-end ,Yhich carries the directory. The problem c,;

specialized back-end idles the ot-ier back-ends of the system.

C. The Problem of Controller Limitation

It should also be pointed out that this system suffers from the controller

limitation problem, since parsing and decomposition of queries is done entirely

at the controller and will take aa amount of time which is independent of the

number of back-ends in the system.

D. The Problem of Multiple Request Execution

Another disadvantage of this system is that the back-ends do not support

concurrent request execution. As a result, overlap of I/0 time with proces-

sing of other requests is net possible and back-ends may be idle for large

amounts of time waiting for an 1/0 to-complete. Consequently, the best use of

processing power is not being made.

E. The Problem of Device Limitation

In this system, each back-end is only connected to a single disk drive.

As a result, very large databases of the magnitude, say, of 1010 bytes, cannot

be supported, since that would require hundreds of back-ends and would make the

system extremely expensive. It would seem more reasonable to allow multiple

disk drives to be attached to each back-end. This is the device limitation

2robl.

F. The Problem of Control Message Traffic

The present configuration of the distributed database system does not

allow for broadcasting of requests to the back-ends. Hence, a request which

rcluires cooperation among, say, three back-ends would require three separate

-,sages from the controller, i.e., (8,000x3=) 24,000 instrucitons and 24 mnsecs
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of controller's CPU time. The ability to broadcast the requests to the back-

ends would save valuable CPU time.

G. The Problem of Data Model Limitation

Finally, a weakness of this system is that it is only designed to support

the rplational model of data. Furthermore, as in DIRECT, the entire relation

has to be retrieved in order to answer an access request for a portion of a

relation. As a result, a larger amount of information than is necessary is

retrieved from the secondary memory.

2.1.4 DBMAC - An Italian Database System

A view of this system is shown in Figure 6. Since information about

this system was obtained through private communication [Miss8O], the details are

necessarily sketchy. The overall architecture consists of a controller con-

nected to a set of back-end computers over a mass bus. The set of back-end

computers is also connected to a set of secoaidary storage devices via another

mass bus. There is no one-to-one correspondence between the back-ends and the

secondary storage devices. Each system task (like the request preprocessing

task, the concurrency control task, etc.) is performed by a set of modules.

The set of modules for a system task are placed in such a way that, as far as

possible, no two modules of a task are placed at the same back-end. Thus, all

the system tasks are executed by the back-ends in a distributed fashion. Each

back-end has a local primary memory and a shared primary memory. Conmmunica-

tions among the back-end processors are by means of message passing over the

first mass bus.

A. The Problem of Channel Limitation

The first observation of the system that we wish to mrake is that its

throughput is limited by the speed of the second mass bus attached to the se-

condary memory. This is because even though there are a number of back-ends,

they cannot access different portions of the secondary memory simultaneously.

Tm other words, the system suffers from the channel limitation problem. The

throughput will also be limited by the speed of the mass bus connected to the

controller. In fact, this mass bus will be heavily utilized, since all the

system tasks have been broken up into modules that communicate with each other

via this mass bus.
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B. The Problem of Software Specialization

Since each back-end contains a separate module from each system task, it

is clear that the software in the different back-ends is not identical. This

leads to a decrease in system reliability, because the loss of one of the pro-

cessors will render the system incapable of performing any database management

function. Furthermore, such a system is not easily extensible. The addition

of a new back-end will require the redistribution of the modules among the

back-ends which may be a time-consuming and non-trivial task.

C. The Problem of Back-end Limitation

Unlike the aforementicned distributed database system, any of the back-

ends of DBMAC may be selected to perform any of the requests, since all back-

ends have access to the entire database. Consider the following example. Let

us assume that each back-end has enough primary memory to store 100 tracks of

information. Also, let us assume that there are n back-ends and n disk drives

and that each drive contains 1000 tracks. Then, the probability that a track

needed to answer a request is in primary memory is (100/l,000n =) i/lOn (assuming

that there is an equal probability of accessing any track). In an organization

such as the distributed database system of Stonebraker, however, the probability

that a track requested by a back-end is in the primary memory is 1/10. This

would cause the back-ends in DBMAC to make many more accesses to secondary me-

mory than the back-ends in the distributed database system of Stonebraker.

D. The Problem of Data Model Limitation

As a final coi-ment, DBMAC supports only the relational model of data.

2.2 Basic Design Considerations for a Multi-Mini Database System (MDBS)

In this section, we will present the overall architecture of a multiple

back-end database system, known as MDBS. We will provide the arguments which

lead us to this particular architecture. More specifically, we will present the

step-by-step development of the architecture. Whenever it is necessary to make

a design decision, we shall use simulation studies and analytic techniques to

examine the alternatives.

2.2.1 Nine Design Goals

In terms of our survey of typical database systems presented in the previous

section, we set nine design goals for MDBS. First, the channel limitation pro-

blem should not be present in MDBS in the first place. Second, the controller
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limitation problem must be alleviated to as large an extent as possible. Third,

the back-ends must execute identical software. That is, all of them must be

utilized to perform all the database management functions. The problems of

software specialization and back-end specialization can then be eliminated.

This leads to increased reliability and to a better workload distribution as has

been discussed. It also leads to the simplified addition of more back-ends.

Fourth, conmunications among the back-ends and between the back-end and the con-

troller must be kept to a minimum. Jithout excessive communications the throu, h-

put of MDBS will not taper off after the first few additional back-ends. Conse-

quently, the problem of control message traffic will not exist. Fifth, we re-

solve not to use any special-purpose hardware in MDBS. As a result, the pro-

blem of hardware specialization will not exist. Sixth, we propose to support

concurrent request execution in our back-ends in order to eliminate the problem

of multiple request execution. For our seventh goal, we resolve to overcome

the device limitation problem by attaching more than one disk drive per back-end.

Eighth, we will design M1DBS in such a way that all the back-ends will participate

in the execution of a request. As a result, we will have eliminated the back-eic

limitation problem. Finally, our ninth goal, we resolve to overcome the problem

of data model limitation. In other words, we will propose a canonical data no-

del into which all prevailing data models (such as relational, hierarchical arnd

network) can be fully translated. If these nine design goals are attained, we

believe that MDBS may come close to being an ideal system whose reliability,

performance (i.e., the throughput and the response time) and growth will be pro-

portional to the number of back-ends employed.

2.2.2 Towards an Ideal System Architecture

In the following section, we will show how we prevent the channel limita-

tion problem from occurring in M DBS. The proposed solution utilizes tie tech-

nique used in the distributed database system of Stonebraker. By superimposing

a data placement strategy on top of that technique, we eliminate the back-end

limitation problem in MDBS as well. This strategy is only briefly explained in

Section 2.3, since it is expounded in great detail in Chapter IV. Furthermore,

the data placement strategy combined with the use of a broadcast capability is

shown to prevent the occurrence of the control message traffic problem in >IDBS.

Next, the device limitation problem is eliminated in MUBS by attaching multiple

disk drives to each back-end. In the final section of this Chapter, we will show
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that the problem of hardware specialization does not exist in MDBS either.

Thus, five of the nine design goals mentioned above are achieved in this

Chapter.

In Chapter III, we propose a canonical data model into which all pre-

vailing data models and their data manipulation languages (such as relation-

al, hierarchical and network) can be translated. Thus, we eliminate the data

model limitation problem in MDBS. The software to be executed at each back-

end is described in Chapter IV. From the discussion in Chapter IV, it will be

seen that the problems of software specialization and back-end speciali-

zation can be eliminated from >!DBS and the goal of using identical software can be

achieved. In order to alleviate the controller limitation problem, the direc-

tory management, concurrency control and secutity enforcement algorithms are

carefully designed. How the careful design of these three algorithms serves to

alleviate the controller limitation problem is explained in Chapters IV, V and

VI, respectively. The discussion of Chapter V will center on how we choose to

eliminate the problem of multiple request execution in MDBS.

The remainder of this chapter is organized as follows. In Section 2.4,

we will design a simulation experiment which will illustrate the importance of

having a broadcast capability in MDBS. Finally, an overview of the basic de-

sign and architecture of MDBS is presented in Section 2.5.

2.3 First Design Decision - Eliminating the Channel, Back-end and
Device Limitation Problems

The only architectural decision we have made with regard to MDBS up to

this point is that it consists of a controller and a number of back-ends.

More decisions regarding the MDBS architecture will be made as we proceed.

Let us now try to design MDBS in such a way as to eliminate any occur-

rence of the channel limitation problem. It was shown that RDBM and DBMAC

both suffered from this problem, whereas, the distributed database system of

Stonebraker and DIRECT did not. DIRECT overcame the problem by use of an

interconnection matrix which allowed any query processor to access any CCD page

frame. The distributed database system of Stonebraker overcame the problem by

using a separate disk drive associated with each back-end. Thus, the technique

developed for DIRECT and the one developed for the distributed database machine

are good candidates for our consideration.

The technique developed for the distributed database system may be at-

tractive owing to its extreme simplicity and low cost. Another strong point
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of this technique is that the concurrency control problem is alle.viate~d be-

cause two different back-ends will not have the same data item for update due

primarily to the use of dedicated disk drives. In spite of these advantages,

the technique may be unattractive to us because it suffers from the problem

that a given request can only be executed at the back-end attached to the disk

drive on which the data relevant to the request resides. This is what we have

called the back-end limitation problem. If the data relevant to a request re-

sides on a single disk drive, only a single back-end can be used to execute

that request. In other words, the parallelism that is present in the system

is not be!.ng utilized to execute the request. We would prefer a technique

which allows all the back-ends to participate in the execution of a given request

DIRECT is a system which allows all the back-ends to participate in the

execution of request. They achieve this by bringing the data relevant to the

request into a CCD memory which is accessible from all back-'ands. However,

such a technique is expensive, since it requires an interconnections matrix

whose cost grows as the product of the number of back-ends and the number of

CCD memory modules.

We therefore wish to develop a technique which allows all the back-ends

to participate in the execution of a request on the one hand and forgoes the

costly interconnection matrix on the other hand. Our solution is to have a

system with dedicated secondary memories and to store the data in such a way

that, whatever the request is, the data to be retrieved for satisfying the

request is evenly distributed among the back-ends. Such a data placement stra-

tegy allows all the back-ends to participate in the execution of request, by

reading data from the secondary memory simultaneously via the multiple channels.

Thus, the lack of parallelism due to dedicated devices as exemplified in the

distributed database system of Stonebraker does not occur in MDBS. In other

words, we have taken the technique of the distributed database system of

Stonebraker for overcoming the channel limitation problem and superimposed on

it a placement strategy which serves to avoid the back-end limitation problem.

An overview of MDBS architecture is depicted in Figure 7. Note that each back-

end is attached to multiple disk drives for the elimination of the device li-

mitation problem.

2.3.1 The Need for a Data Placement Strategy

Let us illustrate the strategy first with an example. Consider a file
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with six records as shown in Figure 8. In the figure, an MDBS with one con-

troller and two back-ends is depicted. In order to keep the example deliber-

ately simple, we make the following simplifying assumptions:
(1) Each back-end has only a single disk drive.

(2) Each disk has only three tracks.

(3) All the records are of fixed-length and occupy exactly one track.

(4) Each record contains exactly three keywords.

Consider the arbitrary placement of recrods in Figure 8a, and assume that

MDBS receives :he following retrieve request.

"Retrieve all records which satisfy the query conjunction (Kl&K3)."

The query will be forwarded by the controller to the two back-ends. Given

the record placement of Figure 8a, we see that the first back-end must access

two tracks, since its disk contains two records - one with keywords Kl, K2 and

K3, and cne with keywords Kl, K3 and K4 - which satisfy the conjunction (Kl&K3).

The second bacc.-end, on the other hand, does not need to access its secondary

memory at all, since it contains no records which will satisfy the given query

conjunction. rhus, if we let td designate the time to access and read-out a

track (i.e., seek time and rotation time) and we ignore the directory search

time and the time taken by the controller to broadcast the request, then the

response time 3f the request tq is equal to 2 td. Can we do better than this?

In the previous example, the poor response time was caused by an uneven

distribution o; the data among the two back-ends. One distribution of data

which leads to a better response time is the one shown in Figure 8b. The

query response time, in this case, is equal to td. This is because each back-

end has only one record satisfying the given query conjunction and needs to

access only one track. Also, the two back-ends can access their respective

disks simultaneously. It is this type of parallel operation, combined with

the even workload (i.e., data) distribution that contributes to the optimal

response time tq.

We would like to note, however, that the arrangement of records as shown

in Figure 8b may cause the response time of some other query (e.g., "retrieve

all records which satisfy the conjunction (Kl&K5)") to become worse. Thus,

the example has demonstrated two things to us. First, a careful data place-

ment strategy must be adopted to obtain improved response time over that which

would be obtained with an arbitrary data placement strategy. Secondly, the

strategy must be good for all the types of requests which will be issued against

the database.
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2.3.2 An Evaluation of Data Placement Strategies

Three data placement strategiLes are outlined and evaluated in this section.

These are the exact division stral:egy, the track splitting with placement from the

first back-end strategy, and the _:rack splitting with random placement strategy.

The differences among these three placement strategies, referred to simply as

Strategy A, Strategy B and Strategy C, respectively, are shown by means of an

example developed in Figures 9. in Strategy A, the records in the response

set were originally divided exactly among the disk drives of the back-ends.

Thus, if the response set of a request consists of five tracks of data and

there are three back-ends as depicted in Figure 9a, each back-end will contain

(5/3-) 1.67 tracks of data. Strategy B also consists of dividing the records

of a response set equally among the back-ends. However, it is different from

Strategy A in that the division of the response set takes place at tract bound-

aries. Thus, if the response set of a request consists of five tracks of re-

cords and there are three back-ends, the disk drive of each back-end will con-

tain one track of data. The remaining two tracks are then assigned to disk

drives of the first two back-end:;. In other words, the disk drive of the first

back-end contains two tracks of the response set, the disk drive of the second

back-end contains two tracks of the response set and the disk drive of the

third back-end contains only one track of the response set as illustrated in

Figure 9b. Strategy C is similar to Strategy B in that the division of the

response set takes place at trac' boundaries. It differs from Strategy 3 in

that the left-over data after exact division of the data in terms of tracks

among the back-ends are assigned to the disk drive of arbitrary back-ends.

Thus, in the example where the response set of a request consists of five

tracks of records and there are three back-ends, the disk drive of each back-

end will contain initially one track of data. The remaining two tracks are

then assigned to the disk drives of the two back-ends picked randomly and not

necessarily to the disk drives of the first two back-ends as in Strategy B.

The situation is depicted in Figure 9c.

Four simulation models of MDBS are developed using SIMULA on a DEC System

20. First, we test out the simulation model in which there is no data place-

ment policy. That is, no assumption is made regarding where the response set

of a request is located. One or more back-ends may be employed in the execu-

tion of a request depending upon where the response set to the request is

stored. Parallelism will be utilized only if more than one back-end needs to

be employed. Such a simulation model would approximate a system like the dis-

tributed database system of Stonebraker tSton7B]. where no special placement
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policy is employed. In the simulation model, a random number generator is

used to determine how many back-ends will participate in answering thie re-

quest and the request is then sent to these many back-ends. The remaining

three simulation models simulate MDBS under the three aforementioned place-

ment strategies.

For all four simulation models, each back-end has a queue of requests

which are executed in a first-in-and-first-out basis. Also, the time to

broadcast a request and the time to return the results to the controller are

ignored, since we are not interested in modelling message traffic at this

point (that will be done later). Furthermore, at a back-end, the time taken

to retrieve records from the secondary memory is assumned to be dominating the

execution time of a request. Thus, CPU execution time is ignored. Finally,

in all four models we make the assumption that a request is never satisfied

by the data that is already in the memory buffers of the back-end. The re-

quest always requires the data to be retrieved from the secondary memory.

While such an assumption implies a worse case situation, it has the advantage

that factors such as good buffering techniques will not affect our results.

The results of our simulation studies are tabulated in Tables I and I!.

It is assumed that 25% of the requests generated are 'insert record' requests

and the remaining are delete, update and retr- eve recuests. Each of the three

latter types of requests require retrieval of information from disks. It is

also assumed that anywhere between five and twenty tracks of information will

have to be retrieved and searched by all the back-ends in order to answer a

retrieve, delete or update request. If more than one track has to he retrieved

by a back-end, no assumption is made that these tracks in the secondary memorv

are sequentially next to each other. For example, consider an MDBS system with

three back-ends and assume that the response set of a request consists of six

tracks of data. Then, the data placement strategy will ensure that each back-

end stores two of the six tracks of the response set. However, the two tracks

of the response set that are placed at a back-end are assumed to be randomly

stored on its disks. In Section 2.3.4, we will present another simulation

study in which we will assume that if more than one track has to be retrieved

by a back-end, then these tracks are sequentially placed on the disk tracks of

that back-end. Finally, the requests are assumed to arrive in a Poisson stream.

This assumption implies that each request is independent of all others. We

have also simulated the systems assuming different arrival patterns, and the
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Number of Back-ends = 15

trategy

Inter- No Placement Strategy Strategy Strategy
Arrival e Strategy 

A B C

of Requests (msecs)

100 255 75.1 64.8 38.2

200 208 57.4 52.6 33.1

Number of Back-ends = 10

Strategy

Inter No Placement Strategy Strategy Strategy

Arrival Time Strategy A B C

of Requests (m3ecs)

100 371 119 94.9 65.0

200 269 78.7 69.3 51.6

Table I. The Response Time (in msecs) of .DBS Under
Various Data Placement Strategies
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The ratio - Response time with no placement strategy
Response time with best placement strategy

N 10 15

100 5.71 6.67

200 5.21 6.28

N: Number of Back-end

I: Inter Arrival Time in Milliseconds

Table II. The Improvement Caused by a Good Placement Strategy
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results do not differ significantly from the ones with Poisson arrivals.

* Similarly, simulations have been run with different percentages of insert re-

*quests. Again, they do not seem to affect the results significantly and their

results are therefore not presented herein. As a final note, the method of sub-

runs [Fran77] was used to make sure that the results were unbiased - that is,

to take care of correlated observations in the simulation.

The actual response times of MDBS under the various placement strategies

are shown in Table I for various request interarrival times and for various

number of back-ends. The first observation we make from the results is that

* the performance of nDBS can be improved by the use of a placement strategy.

Among the various placement strategies, Strategy C is the best and Strategy A

is the worst and this may be explained intuitively as follows. Consider a

systom with three back-ends and assume that a particular request's response

set consists of 195 records. Furthermore, let us assume that 32 records will

fit 4.nto a single track. In all the three strategies, the disk drive of each

back*-end would have stored two tracks of records from this response set, making

a to-:al of 192 stored records. The remaining three records would have been

stor,!d in the disk drives of the three back-ends on the basis of the placement

stra:egy used. Strategy A ensures that the disk drives of each of the back-

ends will contain exactly one of these three left-over records. Strategies B

and ., on the other hand, ensure that all the three left over records are

placad in a single track of the disk drive of one of the back-ends. Strategy A

is no better than Strategies B and C because the time to retrieve one record

from the secondary memory is almost the same as the time to retrieve three re-

cords from the secondary memory. This Js because the minimal disk access time

is the time to access a track. Let us denote the time to retrieve an entire

track of records from the secondary memory as x. Then, in Strategy A, each

back-end will spend 3x time units for this request. on the other hand, in

Strategies B and C, only one of the back-ends will spend 3x time units for

this request. The other two back-ends will spend only 2x time units for this

request. This is the reason for the improved performance of Strategies B and C.

The reason why Strategy B performs worse than Strategy C may be explained

as follows. In Strategy B, after dividing the tracks of a response set equally

among the back-ends, the extra, say, i tracks are assigned to the first i back-

ends. As a result, back-end #1 will always take the longest time to answer a

retrieve (delete or update) request. The response time for this request is
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proportional to the time taken by back-end #1 to answer the requiest, since it always

takes the longest time. In general, back-end #1 will do more work and take

more time than any of the other back-ends, back-end #2 will do more work and

take more time than back-ends #3, #4, #5, and so on. In Strategy C, however,

the workload distribution is more even owing to the fact that after initial

distribution the excess tracks are assigned randomly to the back-ends. Hence,

no one back-end does more work and take more t.'me than any other.

In order to emphasize the advantages of a good placement strategy, i.e.,

Strategy C, over one where no strategy is used, in Table II, we tabulate the

response time ratios in these two cases (the ratios are calculated from data in

Table 1). It is seen that the response time can be improved by a factor of as

much as 6.67 with good data placement. Furthermore, it is seen that for larger

number of back-ends, the ratio is larger. This is an interesting result, since

it tells us that the effect of our proposed placement strategy will become more

evident at larger of number of back-ends. As we are trying to develop an ex-

tensible system, such a result is encouraging. It implies two prospects:

(1) The resporse time of MDBS will be better than the response time of a sys-

tem that does not use a 'good' data placement strategy. (2) The response time

of MDBS will improve as the number of back-ends of MDBS is increased. The

greater the number of back-ends, the better the response time.

2.3.3 An Evaluation of the Data Placement Strategies Using More Refined Assun.ptions

In the previous simulation study, we assumed that the data constituting

the response set were evenly distributed among all the back-ends. We also as-

sumed that the data of the response set at any one back-end were randomly placed

and not necessarily next to each other on the disk. We now focus on more re--

fined simulation by making the assumptions more realistic. Since a large amouint

of data being read and manipulated by a back-end is likely stored on the disk

sequentially, we will not assume that they are placed randonly on the disk.

Instead, we assume now that they are likely placed sequentially, i.e., one

track followed by another track. We also use more refined blocking factors.

Instead of dividing data into tracks, we now assume that the data will be divi-

ded into smaller units, known as pages. Let there be n back-ends in MDBS.

Also, let a request require, on the average, the retrieval of x records. Finally,

let these x records be stored as s groups of xis records each. The value of s

determines the amount of sequentiality that is present in the data being re-



trieved. For example, in the extreme case, s is of value one. This

implies that all the data being retrieved is stored sequentially, since they

are in one group. The larger the value of s, the greater the randomness with

which the records being retrieved are scattered over the disk tracks at a

back-end.

For data placement, the following three new strategies are considered.

(1) Place -s- records from each group at every back-end. That is, g(--)

sn snrecords of a group are placed in some of the back-ends and h(-) re-

cords are placed in the remaining back-ends, where g(y) stands for the

nearest integer equal to or greater than y, and h(y) stands for the

nearest integer equal to or less than y.

xx(2) Let a page accommodate p records. Then, the records of a group
s

g (s- 7-

are stored in g(-) pages and each back-end receives pages.
sp /

That is, certain back-end receives g (s ) pages and certain other

back-end receives h (S()p pages.
(3) Let a track store t records. Then, the records of a group are

sK
g(-

stored in g( fr ) tracks. Each back-end receives - totracks of
st n

data. That is, certain back-end receives g (art) tracks of data

and certain other receives h (i ) tracks of data.

tra~gy 3are lso onsieres

After initial placement of data, the remaining data will be placed in the

following way. For Strategy 2, some i of n back-ends receive 2 A o,) pages

and the remaining (n-i) back-ends receive one page less. The i back-ends which

receive one page more may be either the first i back-ends or any i consecutive

back-ends starting from a randomly chosen back-end which gives rise to two varia-

tions of Strategy 2. W&e.dunot consider other possible vatiations of Strategy 2

and leave them for future research. Similarly, two corresponding variations of

5trategy 3 are also con.Ridered.

Strategy 1 is the same as Strategy A discussed in Section 2.3.2. Also, the

two variations of Strategy 3 are similar to Strategies B and C of Section 2.3.2.

The two variations of Strategy 2 are the counterparts of Strategies B and C of

Section 2.3.2 where the division is done at page boundaries rather than at track
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boundaries.

* Five separate simulation models of KDBS, one for each of the afore-

mentioned data placement strategies, are designed and evaluated using SIMULA

* on a DEC System 20. The assumptions made in these simulations are similar to

the ones made in the simulation of Section 2.3.1' and will not be repeated

here.

2.3.3.1 The Choice of a Superior Strategy for Data Placement on the Basis

of Better Response Time
In discussing the new simulation results, we shall refer to Strategy 1

as the exact division strategy; Strategy 2 as the page splitting strategy.

The two variations of Strategy 2 are called page splitting with placement from

the first back-end and page splitting with random placement, respectively.

Similarly, the two variations of Strategy 3 are referred to as track splitting

with placement from the first back-end and track splitting with random placement.

The number of records needed to be retrieved for a request depends upon whether

the size of the request is small, or large. A small-sized request is one which

requires the retrieval of one to 320 records. A medium-sized request is one

which requires the retrieval of between 320 and 1,280 records. Large-sized

requests require the retrieval of between 1,280 and 6,400 records. We note

that 64 records can fit in a track. Thus, the retrieval of between 320 and

1,280 records is equivalent to the retrieval of between 5 and 20 tracks of re-

cords.

The number of groups into which the retrieved records fall is chosen from

the set 11,5,201. Choosing one as the number of groups implies that all the

data are sequentially related. Thus, they form a single group. Choosing 20

as the number of groups implies on the other hand that there are 20 random data

aggregates, although data in the individual aggregates may be sequentially re-

lated. Another parameter which is varied is the number of back-ends involved.

This is chosen from the set 15,10,151.

Tables IIla, tulb and IlIc, show the simulation results for small-sized,

medium-sized and large-sized requests, respectively.

The results indicate that the track-splitting-with-random-placement stra-

tegy is the best one over all possible numbers of back-ends, of groups and of

of the request size. Only when the number of groups is one does the superior-

ity of this strategy become unclear. Setting the number of groups to one implies
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Number of records retrieved is between 1 and 320

Inter-arrival time = 200 msecs

Small-Sized requests

Response time results in msecs

NUMBER OF GROUPS = 1

Page Page Track ' Track
Number of Exact Splitting Splitting Splitting Splitting

4 Back-ends Division Round Random Round Random
Robbin Robbin

5 60.4 40.1 40.9 39.4 40.3

10 36.6 36.3 36.9 38.9 38.7

15 35.3 35.1 36.1 38.8 37.8

Inter-arrival time 200 msecs

NUMBER OF GROUPS - 5

Page Page Track i Track
Number of Exact Splitting Splitting Splitting Splitting
Back-ends Division Round Random Round Random

Robbin Robbin

5 358 343 343 501 89.3

10 338 317 298 485 66.8

15 332 306 252 485 57.6

Inter-arrival time - 1000 msecs

NUMBER OF GROUPS - 20

Page Page Track Track
Number of Exact Splitting Splitting Splitting Splitting
Back-ends Division Round Random Round Random

i Robbin Robbin

5 977 929 726 1250 266

10 969 886 421 1230 159

11 961 877 305 1230 130

Table Iria. Response Time Results for the Various
Strategies for Small-Sized requests
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Number of records retrieved is between 320 and 1280

'nter-arrival time = 200 msecs

Medium-Sized requests

Response time results in msecs

NUMBER OF GROUPS i

Page Page Track Track
Number of Exact Splitting Splitting Splitting Splitting
Back-ends Division Round Random Round Random

Robbin Robbin

5 75.9 75.6 77 74.8 75

10 32.8 52.6 53.4 50.6 51.2

15 45.8 45.5 47.4 44.6 46.9

Inter-arrival time = 200 msecs

NUMBER OF GROUPS 5

Page Page Track Track
Number of Exact Splitting SplittingI Splitting Splitting
Back-ends Division Round Random Round Random

RobbinJ Robbin

5 617 597 680 535 244

10 432 421 420 504 143

15 389 379 379 494 109

Inter-arrival time = 1000 msecs

NUMBER OF GROUPS - 20" Page Page Track Track

Number of Exact Splitting Splitting Splitting Splitting i
Back-ends Division Round Random Round Random

Robbin Robbin

5 1060 1050 1000 1250 246

10 1010 996 987 1230 159

15 996 969 868 1230 131

Table lllb. Response Time Results for the Various
Strategies for Medium-Sized Requests
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Number of records retrieved is between 1280 and 6400

Inter-arrival time = 500 msecs

Large-Sized requests

Response time results in msecs

NUMBER OF GROUPS = I

Page Page Track Track
Number of Exact Splitting Splitting Splitting Splitting
Back-ends Division Round Random Round Random

Robbin Robbin

5 238 237 245 235 242

10 120 119 121 119 121.0

15 87.1 86.9 91.1 86.2 92.2

Inter-arrival time 500 msecs

NUMBER OF GROUPS = 5

Page Page Track Track

Number of Exact Splitting Splitting Splitting Splitting

Back-ends Division Round Random Round Random
Robbin Robbin

5 517 513 571 491 465

10 308 305 312 290 265

15 258 256 266 247 218

Inter-arrival time 1000 msecs

NUMBER OF GROUPS = 20

Page Page Track Track

Number of Exact Splitting Splitting Splitting Splitting
Back-ends Division Round Random Round Random

Robin Robin

5 1580 1560 1540 1360 866

10 1220 1210 1240 1270 435

15 1130 i1110 1090 1250 307

Table IlIc. Response Time Results for the Various
Strategies for Large-Sized Requests
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that all the data in the database must be stored sequentially. This is a rare

occurrence in database systems. Should this happen, all the strategies are ap-

proximately equal in terms of the resulting response times. However, the track-

splitting-with-random-placement 3trategy leads to very dramatic improvements in

response time over the next best strategy for the larger number of groups. The

superiority of this strategy over all other strategies is most evident for small

to medium-sized requests and when the data tends to be more randomly distributed.

Situations where the average resionse time of MflBS using the next best strategy

is five times slower than che response time of MDBS using the track-splitting-

with-random-placement strategy are noticed. For instance, for small-sized re-

quests, when the number of group3 is five and the number of back-ends is fifteen,

the track-splitting-with-random-?lacement strategy leads to an average response

time of 57.6 msecs. The nearest rival, which is the page-splitting-with-random-

placement strategy, leads to a response time of 252 msecs which is almost five

times slower. The track-splittiag strategy performs better than the page-splitting

strategy for exactly the same reason as that Strategy C of Section 2.3.2 performs

better than Strategy A of the sane section.

Thus, from a performance point of view, the best data placement strategy is

the one where the response set is divided up into tracks of data and stored as

multiples of data tracks. Should there be extra data tracks, after even distri-

bution among the back-ends, they are assigned to the disks of consecutive back-

ends starting from a randomly selected back-end.

In Chapter IV, we uill relate the notion of clusters with the notion of

groups. Clusters are formed on the basis of their attributes and their potential

utilization. However, the placement of the clusters is related to the placement

strategies of the groups which relies on the present simulation studies.

2.3.3.2 The Choice of a Superior Data Placement Strategy on the Basis

of Better Storage Utilization

Let us now consider the various strategies from the point of view of storage

utilization. In this case, the comparison is between a strategy which stores

groups of records in multiples of tracks (as in Strategy 3) and a strategy which

stores groups of records in multiples of pages (as in either Strategies I or 2).

Let us call the former the track-splitting strategies and the latter the page-

splitting strategies.

There are two factors affecting storage utilization: First, there is the
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un-utilized space owing to the fact that records do not exactly fit in a page

(or a track). Thus, if a page can hold only 512 bytes and each record is of

size 200 bytes, 112 bytes on each page is wasted. The second factor that leads

to un-utilized space is the fact that each group of records ends on page bound-

aries (or track boundaries) and records from two different groups are never

placed on the same page (or track). The first factor is favorable to track-

splitting strategies and the second to page-splitting strategies.

Consider again that there are x records to be retrieved and that they are

to be retrieved as s groups of - records each. In the page-splitting stragety,

the s records are stored in g(-2-) pages. The wasted space in g(-!-) -1 of
S sp sp

these pages is the difference between the page size and the p record sizes. The

wasted space on the last page is
page size - (-(g(-) - l)p) x record size

Let page size-p', record size-r, and track size-t'. Then, percentage of wasted

space in the page splitting strategy is

(g(s )-l)(p'-pr) + p' - g(s)- 1)p)r
sp 5

g( x)
Sp

Similarly, the percentage of wasted space in the track-splitting strategy is

Wg()- l)(t' - tr) + t' - -(g -t)-1)t)r
st 5 s

g (2s-) t'

The percentage of wasted space will depend on the size of a record and the

number of records of a group. Some experimental results are shown in Table IV.

The record size is chosen from the {200, 300, 400} bytes, and the value of
s

is chosen from the set {20, 50, 100}. The results are as follows. In either

strategy, the wasted space decreases when the record size is increased. The

page splitting-strategy has less wasted space when the amount of sequentiality

in the data being retrieved is low. However, if a good clustering policy is

employed so that more of the records that are likely to be retrieved together

are stored together, then the track-splitting strategy will waste less space.

In Chapter IV, we will present such a policy. In conclusion, we shall use the

track-splitting strategy in MDBS both for the good response time and for the

low storage wasted.
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PAGE-SPLITTING POLICY

Number of Records Per Group

Record
Size 30 60 90

(bytes)

200 .219 .219 .219
300 .414 I .414 .414
400 .219 I .219 .219

500 .023 ! .023 .023

TRACK-SPLIT'IING POLICY

I Number of Records Per Group

Record
Size 30 6C 90

(bytes) i

200 ,625 ,023 .023

300 .438 j .023 .023
400 .250 .023 .023
500 .063 .023 .023

Table IV. Comparison of Storage Wastage Between
Two Different Placement Policies are Used.
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2.3.4 Next Step in the Design Process

We have now gone one step further in our design of ?4DBS. We have decided

that it is going to be a dedicated system in which each back-end has attached

to it a number of disk drives which are not accessible from any other back-end.

As a result, the controller and device 1imitation problems are eliminated in

MDBS. Furthermore, we have decided to use a data placement strategy in order

to store the data in the disk drives in an evenly distributed manner for the

improvement of the response time and storage utilization. Such a strategy will

be proposed in details in Chapter IV. We also argue that such hardware confi-

guration and data placement will ensure that all back-ends will participate

in the execution of a request and eliminate the back-end limitation problem.

Unlike DIRECT, we do not need a costly interconnection matrix in order to

achieve this. Finally, we will show in :he next section that as a result of

our data placement strategy the amount of control message traffic needed in

MBS is much less than in DIRECT. We will also propose, in the next section,

the incorporation of a broadcast capability in M{DBS for further minimizing

control message traffic.

2.4 Second Design Decision - Minimizing the Problem of Control Message Traffic

Consider a DIRECT system with three query processors executing a request

that requires access to nine pages of memory. The execution of such a request

requires three messages to be sent from and to be received by each of the three

query processors. It also requires the controller to send and receive nine

messages. The figures are only for messages that are sent and received by the

processors asking for page frames and do not include the three messages that

must be sent by the controller in order to initiate the query processors nor

does it include one message from each of the query processors when they out-

put the results. In all, DIRECT exchanges 24 messages while executing this

request for nine pages.

MDBS, on the other hand, will require only six messages. Three messages

are needed to send the request to the three back-ends and one message will be

received from each of the back-ends when they output the results.

The number of messages needed in MDBS may be further reduced to four if we

have a broadcast capability. Our feeling that a broadcast capability is impor-

tant for MDBS is prompted by the following. Since the data placement strategy

ensures that all back-ends will be participating in answering a request, the
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request must now be sent to every back-end. Thus, with a broadcast capability

of a system of n back-ends, we need only a single message rather than n mes-

sages to broadcast a request. The simulation experiment in the next section

illustrates, graphically, the advantages of a broadcast capability.

2.4.1 The Need for a Broadcast Capability

Two sets of simulations are run - one for MDBS without the broadcast

capability and one for MDBS with such a capability. Once again, the simula-

tion programs are written in SIMULA on a DEC System 20. It is assumed, as in

the earlier simulation experiments, that four types of requests (i.e., retrieve,

insert, delete and update) are issued and that 25% of all requests are of the

insert type. Also, as before, it is assumed that anywhere between five and

twenty tracks will have to be retrieved and searched in order to answer a re-

trieve, delete or update request. The requests are assumed to arrive in a

Poisson stream. Finally, it is assumed that the time taken to retrieve records

from the secondary memory dominates the CPU processing time so that the latter

time may be ignored. Simulations are run for various numbEr of back-ends and

various request inter-arrival times. The response time results are tabulated

in Table Va.

Table Va indicates that the inclusion of a broadcast capability can make

the MDBS system up to 2.5 times as fast as it would be witlout such a capability.

Also, the utility of such a capability becomes ncr2 evident for larger number

of back-ends. This is, of course, to be expected. It shotld be pointed out

that the improved response time in the case of MDBS with the broadcast capability

is a direct result of this capability, since the control message traffic is reduced.

2.4.2 An Evaluation of the Broaicast Capability with More Refined Assumptions

The results of Table Va assumed that the tracks to be retrieved from the

secondary memory of a back-end were distributed randomly across the disk drives

of that back-end. Since each track requires the time for seek and rotation we

now consider that the tracks to be retrieved at a back-end are clustered

in such a way that the seek time may be unnecessary for all except the first

track retrieved. The number of back-ends is chosen from the set {5, 10, 15}.

Another parameter that is varied is the number of tracks that must be retrieved

for a typical request. A small-sized request requires the retrieval of between

one and five tracks. A medium-sized request requires the retrieval of between



- 54 -

NUMBER OF BACK-ENDS = 15

System
MDBS MDBS

Inter with without MDBS without BroadcastArrival Time Broadcast Broadcast MDBS with Broadcast
of Requests (msecs)

100 46.9 104 2.22

200 40.7 104 2.56

NUMBER OF BACK-ENDS = 10

Ss tem
NMBS MDBS MDBS without Broadcast

Inter with without MDBS with Broadcast
Arrival Time Broadcast Broadcast
of Requests (msecs)\

100 72.7 92.6 1.27

200 59.2 92.2 1.56

Table Va. Response Time for MDBS with and
without Broadcast Facility



- 55 -

five and twenty tracks. Finally, for large-sized requests, the number of tracks

to be retrieved varies from twenty to one hundred. The results for smalL-sized,

medium-sized, and large-sized requests are shown in Table Vb, Vc and Vd, re-

spectively.

Consider the results for the cace where the number of tracks to be retrieved

varies from one to five. With an interarrival time of one request every 200
msecs, the average response times for 5, 10 and 15 back-ends using broadcast is

31.7, 20.6 and 17.2 msecs, respectively. Thus, the response time decreases

with increasing number of back-ends as expected. On the other hand, the corres-

ponding response times for the case where no broadcast capability is assumed are

46.2, 59.3 and 87.0 msecs, respectively. That is, the response time actually

increases with increasing number of back-ends! This is because the message

sending time is dominating the secondary memory access time (since the number

of tracks to be retrieved is so few). By comparing the set of respons times

with the broadcast capability with the corresponding set of response times

without such a capability, we see that the use of broadcast may result in 50k-,

130% and 400% of improvements for the respective configurations of 5, 3.0 and

15 back-ends. The results remain to be the same, even when the interarrival

rate is increased to one request every 100 msecs.

Next, let us consider the results for the case where the requests are

medium-sized and where the requests require the retrieval of between ive and

twenty tracks of data. Once again, the response time of MDBS without hIe broad-

cast capability increases with increasing number of back-ends. Thus, with an

interarrival time of one request every 100 msecs and five back-ends, the response

time is 85.1 msecs. However, the response time with ten back-ends is 87.4 msecs

and with 15 back-ends it is 104 msecs. On the other hand, the system with tie

broadcast capability behaves in an increasingly better manner. The correspond-

ing figures in this case are 96.4, 56.7 and 43.2. The percentage of improvement

gets to be as high as 250% or 2.5 times better.

Finally, consider the results for the case where the number of tracks re-

trieved is between twenty and one hundred. The effect of not having a broadcast

capability is expected to be felt the least under such circumstances. The simu-

lation results certainly bear out this intuitively expected result. For the

first time, the system without the broadcast capability shows an improvement in

response time when the number of back-ends is increased from five to ten. How-

ever, the performance of the system does not improve when the number of back-ends
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Response Time Tables (in milliseconds)

Small-Sized Requests

(Between 1 and 5 tracks)

Inter-arrival time = 100 msecs

Number ofNubaken o With Broadcast Without Broadcastback-ends

5 34.5 46.3

10 21.8 59.3

15 j 18.1 86.9

Inter-arrival time = 200 msecs

Number o fNubaken o With Broadcast Without Broadcastback-ends

5 31.7 46.2

10 20.6 59.3

15 17.2 87.0

Table Vb. Comparing MDBS with and without
Broadcast for Small-Sized Requests
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Response Time Tables (in nisecs)

Medium-Sized Requests

(Between 5 and 20 tracks)

Inter-arrival time = 100 msecs

Number ofbacked of With Broadcast Without Broadcastbac k- end s

5 96.6 85.1

10 56.7 87.4

15 43.2 104

Inter-arrival time = 200 msecs

Number of With Broadcast Without Broadcast
back-endsBracs

5 73.2 81.6

10 49.0 87.3

15 38.7 104

Table Vc. Comparing MDBS with and without
Broadcast for Medium-Sized Requests
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Response Time Tables (in msecs)

Large-Sized Requests

(Between 20 and 100 Tracks)

Inter-arrival time 500 msecs

Number of With Broadcast Without Broadcast
back-ends

5 233 232

10 118 152

15 86.8 152

Table Vd. Comparing MDBS with and without
Broadcast for Large-Sized Requests
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is increased from ten to fifteen. In contrast, the performance of the system

with the broadcast capability improves constantly with ever increasing number

of back-ends. When the number of back-ends is 15, we note that the system

with the broadcast capability still outperforms the system without the broad-

cast capability by 90%.

In conclusion, the use of a broadcast capability can be very important.

The need becomes more acute when the number of back-ends is large and when

typical requests do not require the retrieval of large amounts of data. A sys-

tem without broadcast capability can behave anomalously in that the response

time actually increases with increasing number of back-ends. Such degradation

in response time is primarily due to the increase in control message traffic.

We wish to emphasize that the ability to broadcast is essentially attained

by software means. That is, no special-purpose hardware is needed in order to

achieve a broadcast capability. There are many examples of systems that pro-

vide a broadcast capability. For instance, Ethernet [Metc76], which is a

coaxial cable network, provides such a capability. Another scheme which pro-

vides a broadcast capability is the time-shared bus. Three different commonly

used techniques for achieving a broadcast capability using a time-shared bus

are described in [Tane~l] and will not be repeated here. In conclusion,

broadcast capability is achieved by using appropriate software and requires

no special-purpose hardware. Furthermore, such software is available from

many vendors and is being comonly used. Hence, our proposal for using a

broacast capability in .9DBS does not lead to the problem of hardware speciali-

zation.

2.5 An Overview of the MDBS Architecture and Design

At this point, our proposed architecture looks as shown earlier in Figure 7.

It consists of a single controller attached to a number of back-ends by way of

a bus or a local network (such as an Ethernet) which provides a broadcast capa-

bility. A back-end is attached with a number of disk drives which may be

accessed only by that back-end. Since we do not use special-purpose hardware,

we have therefore solved the problem of hardware specialization in lIDBS. In

Chapter 1, we had listed eleven different issues which had to be studied in the

context of a multiple back-end system. Let us briefly consider those issues

that have been resolved for MDBS at this point of the design study.

The first issue was regarding the optimal way of interconnecting a large
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number of back-ends and the optimal way of connecting the controller to the

back-ends. We have decided on a scheme whereby all the back-ends and the

controller are attached to a bus. This provides the controller with the abili-

ty to broadcast requests to all the back-ends and leads to a minimization of

the control message traffic problem.

Another issue concerns the placement of data aggregates Of.

the database across the back-ends. This issue has also been resolved to our

satisfaction. We have shown, by simulation, a strategy with which the response

sets to all requests may be evenly distributed among the back-ends and the extra

tracks of data are assigned to consecutive back-ends starting from a randomly

selected back-end. The strategy is best in terms of minimum response time and

minimum storage wastage. We have termed it the track-splitting-with-random-

placement strategy. This strategy thus eliminates the back-end limitation pro-

blem.

Another issue we had mentioned in Chapter 1 was the database store inter-

connection problem - that is, the attachment of disk drives to back-ends, We

have chosen to adopt the dedicated approach because it eliminates the channel

limitation problem. Furthermore, by attaching more than one disk drive to each

back-end, we have eliminated the device limitation problem.

The next issue concerns the execution strategy. That is, should a SIMD

or a MIND approach be used. Our proposed design operates in a MIND fashion.

As much as possible, the different back-ends are made to work on the same request.

However, when a back-end finishes the execution of a request, the back-end is to

start the execution of the next request. In other words, the different back-ends

are executing requests in an asynchronous fashion. Asynchronous execution is

achieved in MDBS by having a queue of requests at each back-end. Whenever a

back-end finishes a request, it picks up the next request from its queue and

begins its execution. As we had indicated in our survey of DIRECT, this saves

the need for a back-end to send a message to the controller after execution of

each request and the need for the controller to respond with the next request

in the controller queue. Thus, assuming a message time of eight milliseconds,

this proposal will save sixteen milliseconds per request over a proposal where

no queue of requests is maintained at each back-end. Additionally, it allevi-

ates the controller limitation problem to some extent by removing the queue

handling software from the controller and placing it at the back-ends. In fact,

the amount of overhead associated with the controller is exactly the same as
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would have been associated with it if the system had been executing in an SIMD

mode. In other words, our proposal for a queue at each back-end allows us to

reap the benefits of the MIMD mode of execution at the price of the SIND mode

of execution.

Thus, five of the nine design goals we set for ourselves in Section 2.2.1

have been achieved at this point. We will achieve the goal of finding a ca-

nonical data model in Chapter III. We will achieve the goal of using identical

software in Chapter IV. The means for achieving the goal of eliminating the

multiple request execution problem is de:3cribed in Chapter VI. Finally, in

order to achieve our goal of alleviating the controller limitation problem,

the directory management, security enforcement and concurrency control algori-

thms are carefully designed. These algo-:ithms are described in Chapters IV, V

and VI, respectively.
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3. THE CHOICE OF A DATA-MODEL AND A DATA MANIPULATION LANGUAGE

In this chapter, we will develop a canonical data model for MDBS imple-

mentation. A canonical mnodel must moet the following three criteria: tile transla-

tion criterion, the partition criterion andh the language criterion.

These criteria will be elaborated in tile following sections. An attribute-

based model is proposed herein which is the best candidate to meet the criteria.

With the canonical data model as a basis, we then propose a data manipulation

language in which users may issue requests to MDBS. The language also encom-

passes the useful notion of a transaction. Finally, in this chapter, we contrast

the basic requests with the aggregate requests. The latter perform aggregate

operations such as summation, average, maximum and minimum, over attribute values.

3.1 Three Selection Criteria

We will discuss the criteria informally and briefly herein. A detailed

discussion of the criteria will be included in the course of developing the

canonical model, known as the attribute-based model.

3.1.1 The Translation Criterion

All the systems surveyed in Chapter II [Auer8O, Dewi78, Miss8O, Ston78)

support the relational model of data. On the other hand, a large number of

operational database systems 7Datayy, Idmsyy, Systyy, Adabyy, Totayy] support

either the hierarchical or the network data model. Therefore, there is the

need to translate the existing hierarchical and network databases into rela-

tional databases before they nay be used on relational systems. Such transla-

tion is a part of general studies of converting a database from one model to anoth-

er and is known as database transformation [Bane8O]. Furthermore, there is the

need to translate the requests for the hierarchical or network database into re-

quests for a relational database. Request translation is also a part of gener-

al studies of translating a data language to another and is known as query trans-

lation (Bane8O]. To the best of our knowledge, complete solutions to the problems of

database transformation and query translation among the aforementioned three models

are not at hand. Hence, more research needs to be done before hierarchical and net-

work databases may be supported entirely on a relational system. For this reason,

we do not prefer the relational model. Similar reasons may be raised to reject the

network and hierarchical data models. Database transformation and query translation

constitute therefore the first criterion, i.e., the translation criterion, for



-63 -

selecting a data model.

There are two more criteria that a data model must satisfy if we are to

implement the data model in MDBS. These are referred to as the partition

criterion and the language criterion. We will illustrate these two criteria

by means of examples in the sequel. The examples will also illustrate why we

choose to reject the network and hierarchical data models for MDBS implementation.

3.1.2 The Partition Criterion

Consider the sample network data model in Figure 10 where an inventory

control database consists of four record types (namaly, customer, order, item

and part) and three set types (customer-order, order-item and part-item).

The customer-order set links each customer to all his orders. Thus, Customer

ABC is linked to orders 1, 2 and 3. Corresponding to each order, there can

by any number of items. Thus, for example, items 1 and 2 correspond to order

1. Finally, a part in the inventory consists of a number of items. For ex-

ample, part 2 consists of items 2, 3, 5, 7 and 8.

A typical request for such a database may be as follcws:

'list all the order numbers for Customer AXBC'.

A conventional network database system would respond to such a request by first

retrieving the record for Customer ABC (with the use of a hashing function on

the unique customer number) and then following the chain cf pointers to make

three additional secondary accesses to retriev~e the records for orders 1, 2

and 3. Thus, a conventional system would need four secondary accesses to re-

spond to this request.

Consider, now, how a system like MDBS would answer this request. For ex-

pository purposes, let us assume that 'MBS consists of a controller and

three back-ends. Now, the response time of MBS to this particular request

would depend upon the manner in which the database of Figure 10 is distributed

across the three back-ends. If the record corresponding to Customer ABC, and

those corresponding to orders 1, 2 and 3 are all stored at one of the back-

ends, then MDBS, like the conventional system, would also need four ac-

cesses to the secondary memory. Clearly, we can do better than four.

One way to minimize the number of accesses might be to partition the

database in such a way that the three records in the customer-order set with

Customer ABC as their owner are placed in the three different back-ends. The
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Figure 10. A Sample Network Database with Four
Record Types anid Three Set Types
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new database storage is now shown in Figure 11. Essentially, we have parti-

tioned the member records of the set customer-order by the back-ends. Thus,

any request which requires the retrieval of all members in any customer-order

set may be easily answered. The same request

'list all order numbers for Customer ABC'

is now answered in two accesses to the secondary memory, instead of the four

needed in the previous environment.

We have, however, had to incorporate some redundancy in the database.

Thus, the Customer ABC record is now to be stored in three different disks,

the Customer DEF record is to be stored in two disks, the Part 1 record is

to be stored in two disks and the Part 2 record is to be stored in three disks.

The record storage increases by a factor of (24/18=) 1.5. Similarly, the nuna-

ber of pointers has gone up from 31 to 37.

In addition to the fact that the total amount of storage may go utD is

the new problem of updating redundant data. Thus, if the address of Custome-

ABC is changed, it must now be changed in three different back-ends. Hence,

the controller must be aware of all the different copies of a record and mus:

ensure the mutual consistency (Thom79] of all these different copies during lp-

date. Algorithms for ensuring the mutual consistency of these different copies

are rather complicated. Thus, we should avoid the problem if possible.

Although the above solution to partitioning the network database 'has re-

sulted in a faster response to requests for all members in any customer-order

set, the response to requests for all members in an order-item set is as slow

as in any conventional system. In order to improve the response ti.re to such

requests, we will need to partition the member records of all order-item sets

by the back-ends. This causes a further increase in the amount of data re-

dundancy.

Finally, we see that the insertion of a new record into the dacabase will

require the addition of other data. In referring to Figure 11, for example,

if a new order is created for Customer DEF and must be inserted into the data-

base, it should be inserted into back-end 3 in order to ensure an even dis-

tribution of the member records of Customer DEF across the back-ends. However,

since back-end I does not contain a record for Customer DEF, a copy of the Customer

DEF record must be created in back-end 3 in order to represent the relationship

between Customer DEF and the newly inserted order record.

From the above discussion, we learn that the partitioning of a network
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database for MDBS may introduce the problems of storage redundancy and mutual

consistency. A data model is easl partitionable if the partitioned database

stored in MDBS for the model leads to little or no storage redundancy.

Consequently, there will be little or no concern for the problem of mutual con-

sistency during update. Both hierarchical and network models are not easily

partitionable. Ca the other hand, the relational model is easily partition-

able. This concludes our presentation of the partition criterion. It also

illustrates why we are against implementing a network or hierarchical data

model in MDBS.

3.1.3 The Language Criterion

Another reason for not implementing the hierarchical or network data model

in MDBS is related to the data manipulation languages associated with these data

models, i.e., the so called language criterion. It is evident that MDBS will

outperform conventional systems for requests that require content-addressing and

retrieval of large volumes of data, because the data can be spread across many

back-ends and can be fetched in parallel. However, if the user transaction de-

mands records in a sequential, one-record-at-a-time manner, then MDBS cannot

outperform a conventional system to any great extent. Unfortunately, the data

manipulation languages associated with hierarchical network databases tend to

manipulate data in a sequential, one-record-at-a-time manner. Hence, they are

unsuitable for MDBS implementation. The ideal language for MDBS will be one

which is highly concurrent and which requires the retrieval of large volumes of

data. We shall present such a language in a later section.

3.2 7he Attribute-Based Model

Having eliminated from consideration the relational, hierarchical and net-

work data models, we shall now consider the attribute-based data model [Hsia70,

Roth80, Wong7l]. In [Bane77, Bane78a, Bane80], several contributions are made with

regard to the attribute-based model. First, they have shown that any relational,

network or hierarchical database may be transformed, in a straightforward way,

into an attribute-based database. Thus, there is no 47tabase transformation

problem. They have also demonstrated that the requests issued in the data

manipulation languages of these three data models may he easily

translated into the requests of the attribute-based data manipulation language.

Thus, the attribute-based data model does not suffer from the query translation
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problem. Consequently, unlike the relational, hierarchical and network data

models, the attribute-based model meets the translation criterion. Why is it

that other data models and their manipulation languages can be so easily

translated into the attribute-based model and its manipulation language? The

reason has to do with the fact that the attribute-based model is a very basic

model which embodies only a few simple concepts. When one tries to transform

the database of a complex model into a database of another complex model, one

must use the complex concepts in the second model to 'emulate' the complex con-

cepts of the first model. This is difficult due mainly to the major differences

among the concepts of these models. For example, the concept of a set of the

network model is sufficiently complex as to make it difficult to find its counter-

part in the relational and hierarchical models. In other words, it is not easy

to find concepts in the relational and hierarchical models to emulate the

concept of a set. On the other hand, being basic, the concepts of the attri-

bute-based model may be used as building blocks for the more complex concepts

of the aforementioned three data models. The process of translating a complex

concept into one or more elementary concepts is frequently an easier task than

the process of translating a complex concept to one or more complex ones.

Next, the attribute-based data model does not suffer from the partition

problem. We recall that the network data model suffers from the partition pro-

blem because its partitioned database has a large amount of data redundancy.

Such redundancy was essentially caused by the fact that two different mechanisms

are used to represent data in a network database, where entities are represented

by records and relationships are represented by pointers. in an attribute-based

model, all logical concepts (i.e., entities and relationships) are represented by

attribute-value pairs. Thus, data may be easily partitioned across the various

back-ends with no redundancy. Finally, the data manipulation language of the

attribute-based model does not operate in a sequential, record-at-a-time manner.

By the use of boolean expressions of predicates as queries, it operates in a

highly concurrent manner thus allowing us to utilize the capabilities of NDBS

to the fullest. Accordingly, we choose to implement the attribute-based model,

since it meets all three criteria, namely, the translation, partition and

language cr~teria.

3.2.1 Concepts and Terminology

The smallest unit of data in MDBS is a keyword which is an attribute-value
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pair, where the attribute may represent the type, quality, or characteristic

of the value. Information is stored in and retrieved from MDBS in terms of

records; a record is made up of a collection of keywords and a record body.

The record body consists of a (possibly empty) string of characters which are

not used for search purposes. For logical reasons, all the attributes in a

record are required to be distinct. An example of a record is represented

below:

(<File,EMP>, <Job,MGR>, <Dept,TOY>, <Salary,30000>).

The record consists of four keywords. The value of the attribute Dept, for

instance, is TOY. In this dissertation, we will use "<", ">" to bracket a

attribute-value pair; I(",")II to parenthisize a record; character strings

with leading capitals for attributes; numerals or all capitals for values;

and commas to separate the attribute-value pairs of a record.

MDBS recognizes several kinds of keywords: simple, security and direc-

tory. Simple keywords are intended for search and retrieval purposes. Secur-

ity keywords are intended for access control and will be elaborated fully in

Chapter V. Directory keywords are used for forming clusters. A cluster of

records has a high probability of being retrieved from the back-ends together.

Records of a cluster are therefore stored in close proximity. We will dis-

cuss the concept of a cluster and cluster algorithms in dhapter IV. In this

chapter, we present the attribute-based model, the concept of simple keyword

and its data manipulation language.

A keyword predicate, or simply predicate, is of the form (attribute, re-

lational operator, value). A relational operator can be one of {=,#,>

A keyword K is said to satisfy a predicate T if the attribute of K is identical

to the attribute in T and the relation specified by the relational operator of

T holds between the value of K and the value in T. For example, the keyword

<Salary,15000> satisfies the predicate (Salary>lO000).

A descriptor can be one of three types:

Type-A: The descriptor is a conjunction of a less-than-or-equal-to pre-

dicate and a greater-than-or-equal-to predicate, such that the

same attribute appears in both predicates. An example of a type-A

descriptor is as follows:

((Salary?2,000) A (Salary-_10,000)).

More simply, this is written as follows:

(2,000 Salary lO,000).
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Thus, for creating a type-A descriptor, the database creator

merely specifies an attribute (i.e., Salary) and a range of

values ($2,000 and $10,000) for .hat attribute. We term the

value to the left of the attribute the lower limit and the

value to the right of the attribute the upper limi

Type-B: The descriptor is an equality predicate. An example of a

type-B descriptor is:

(Position=PROFESSOR).

Type-C: The descriptor consists of only an attribute name, known as the

type-C attribute. Let us assume that there are n different key-

words K1, K2, ... , and Kn in the records of a database with a

type-C attribute. Then, the type-C descriptor is really equi-

valent to n type-B descriptors B1, B2, ... and Bn, where BI is

the equality predicate satisfied by Ki. In fact, this type-C

descriptor will cause n different type-B descriptors to be formed.

From now on, we shall refer to the type-B descriptors formed from

a type-C descriptor as type-C sub-descriptors.

For instance, consider that Dept is specified as a type-C attribute

for a file of employee records. Furthermore, let all employees in

the file belong to either the TOY department or the SALES department.

Then two type-B descriptors will be formed for this file. They arr

(Dept=TOY) and (Dept=SALES).

In forming descr-° tors, the database creator must observe certain rules as

follows:

(1) Ranges specified in type-A descriptors for a given attribute must be

mutually exclusive.

(2) For every type-B descriptor of the form (attribute-i = value 1), no

type-A descriptor can have the same attribute (i.e., attribute-l) and

a range that contains the same value (i.e., value-l).

(3) An attribute that appears in a type-C descriptor must not also appear

in a type-A or a type-B descriptor defined previously.

(4) Type-A descriptors are specified first; Type-B descriptors next: Type-C

descriptors last.

A keyword is said to be derived or derivable from a descriptor if one of the

following holds:

(a) The attribute of the keyword is specified in a type-A d-cr-ror and

the value is within the range of the descriptor.
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(b) The attribute and value of the keyword match those specified in a

type-B descriptor.

(c) The attribute of the keyword is specified in a type-C descriptor.

The use of these descriptors will be demonstrated in Chapter 4.

A query conjunction, or simply conjunction, is a conjunction of predicates.

An example of a query conjunction is:

(Salary>25000) A (Dept-TOY) A (Name-JAI)

We say that a record satisfies a query conjunction if the record contains key-

words that satisfy every predicate in the conjunction.

A query is a hoolean expression of predicates. An example of a query is:

((Dept-TOY) A (Salary<10000)) v ((Dept-BOOK) A (Salary>50000))

3.2.2 The Data Mar.ipulation Language (DML)

The data manipulation language for MDBS is a non-procedural language which

supports four different types of requests - retrieve, insert, delete and update.

The syntax of these various requests and examples of them are presented below.

For a formal specification of DML, the reader may refer to the Appendix A.

A. Retrieve

The syntax of a retrieve request is:

REMRIEV Query Target-list [BY Attribute] [WITH Pointer]

That is, it consisi:s of five parts. The first part is the name of the request.

The second part is the query (as defined in Section 3.2) which characterizes the

portion of the database to be retrieved. The target-list is a list of elements.

Each element is either an attribute, e.g., Salary, or an aggregate operator to be

performed on an attribute, e.g., AVG(Salary). We will support five aggregate

operators - AVG, SUM, COUNT, MAX, MIN - in MDBS. An example of a target-list of

two elements is (Dept, AVG(Salary)). The values of an attribute in the target-list

are retrieved from all the records identified by the query. If no aggregate oper-

ator is specified on the attribute in the target-list, its values in all the re-

cords identified by the query are returned directly to the user or user program.

If an aggregate operator is specified on the attribute in the target-list, some

computation is to be performed on all the attribute values in the records identi-

fied by the query and a single aggregate value is returned to the user or user pro-

gram. The fourth part of the request, referred to as the BY-clause, is optional

as designated by the square brackets around it. The use of the By-clause is ex-

plained by means of an example. Assume that employee records are to divided into

groups on the basis of the departments for the purpose of calculating the average
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salary for all the employees in a department. This may be achieved by using a re-

trieve request with the specific target list. (AVG(Salary)), and the specific BY-

clause, BY Department. Finally, the fifth part of the request, which is also

optional, is a WITH-clause which specifies whether pointers to the retrieved re-

cords must be returned to the user or user program for later use in an update

request. Some examples of retrieve requests are presented below.

Example 1. Retrieve the names of all employees who work in the Toy

Department.

RETRIEVE (File=EMPLOYEE) A (Dept=TOY) (Name)

Example 2. Retrieve the names and salaries of all employees making more

than $5000 per year.

RETRIEVE (File=EMPLOYEE) A (Salary>5000) (Name,Salary)

Example 3. Find the average salary of an employee.

RETRIEVE (File-EMPLOYEE) (AVG(Salary))

Example 4. List the average salary of all departments.

RETRIEVE (File=EMPLOYEE) (AVG(Salary)) BY Department

B. Insert

The syntax of an insert request is:

INSERT Record

where, Record is the record to be inserted into the database. An example of

an insert command is:

INSERT (<Relation,EMPLOYEE>,<Salary,5000>,<Dept,TOY>)

C. Delete

The syntax of a delete request is:

DELETE Query

where Query is a query which specifies the particular records to be deleted

from the database. An example of a DELETE request is:

DELETE (Name-HSIAO) V (Salary>50)

D. Update

In DML, the syntax of an update request is:

UPDATE Query Modifier

where Query specifies the particular records from the database to be updated

and Modifier specifies the kinds of modification that need to be done on re-
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cords that satisfy the query. An update in MDBS which provides for the modifica-

tion of only a single attribute value will have the attribute referred to as the

attribute being modified. The modifier in an update request specifies the new

value to be taken by the attribute being modified. The new value to be taken by

the attribute being modified is specified as a function f of the old value of

either that attribute (i.e., Type-I) or some other attribute (Types II, III and IV).

The modifier may be one of the following five types:

Type-0: <attribute-constant>

Type-I: <attribute-f (attribute)>

Type-Il: <attribute=f (at tributel)>

Type-Ill: <attribute-f(attributel) of Query>

Type-IV: <attribute-f(attributel) of Pointer>

Let a record being modified be referred to as the record being modified.

Then, a Type-O modifier sets the new value of the attribute being modified to

a constant. A Type-I modifier sets the new value of the attribute being modi-

fied to be some function of its old value in the record being modified. A

Type-Il modifier sets the new value of the attribute being modified to be some

function of some other attribute value in the record being modified. A Type-Ill

modifier sets the new value of the attribute being modified to be some function

of other attribute value in another record uniquely identified by the query in

the modifier. Finally, a Type-IV modifier sets the new value of the attribute

being modified to be some function of some other attribute value in another

record identified by the pointer in the modifier. An example of a Type-O

modifier is:

<Salary-5000>

This sets the salary of all the records being updated to 5000.

An example of a Type-l modifier is:

<Salary-l.lxSalary>

This raises the salary of all qualifying employees by 10%.

An example of a Type-Il modifier is:

<Monthsal-Yearsal/12>

This sets the monthly salary of all qualifying employees to be a twelfth of

their own yearly salaries.

An example of a Type-Ill modifier is:

<Salary-Salary of (Relation-WIFE) A (Name-TARA)>.

An example of a Type-IV modifier is:

<Salary-Salary of 2000>
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which modifies the salary of all qualifying employees to that of the record

stored in location 2000. In order to use this type of modifier, the user must

have previously issued a retrieve request with the WITH POINTER option.

An example of a complete update request may be:

UPDATE (File=EMPLOYEE) <Salary=Salary+25>

which gives a raise of $25 to all employees.

3.2.3 The Notion of a Transaction

In DM., we allow the flexibility for a user to specify a set of requests

for repeated execution. Such a pre-specified set of requests shall be referred

to as a transaction. As in other systems, a transaction must preserve consis-

tenc , i.e., uphold the truthhood of the assertions made about the database.

A database creator specifies a set of assertions on the database. These as-

sertions are constraints which must be satisfied by data in the database. For

instance, since employees cannot have negative salaries, an assertion on the

database may require that all employees have positive salaries. An assertion

about a database is said to be true in the database if the data in the data-

base satisfies the constraints in the assertion. A database is in a consistent

state if all the assertions made on the database by the database creator remain

to be true in the database. Finally, a transaction is said to preserve consis-

tency, if the database is in a consistent state before it begins execution and

the database is in a consistent s:ate after it finishes execution.

Some examples of transactions in our environment are present below. We

begin each transaction with BOT, an acronym for beginning-of-transaction and we

terminate each transaction with EOT for end-of-transaction.

Example 1. We assume the existence of two files in a database [Eswa76],

one called accounts and the other called assets depicted in

Figure 12. The only assertion made by the database creator

on this database is that the total assets at a particular lo-

cation are equal to the sum of the balances at that location.

We Assume that the record

(<Location,NAPA>, <Number,5320>, <Balance,287>)

is to be inserted repeatedly into the database. Each time such

an insertion takes place, the sum of the balances at location

Napa is increased by $287. Hence, if the assertion, that the

sum of the balances at a location is equal to the total assets
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ACCOUNTS AS SETS

Location Number Balance Location Total

NAPA 32123 1050 ST HELENA 506

ST HELENA 36592 506 NAPA 13371

NAPA 5320 287

Figure 12. A Sample Database of Two Files
(Adopted from [Eswa761)
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at that location, is to be preserved, then the total for the

location Napa in the assets file must also be increased by

$287. A transaction that does this is:

BOT

INSERT (<Location,NAPA>, <Number,5320>, <Balance,287>)

UPDATE (File-ASSETS) A (Location-NAPA) <Total=Total+287>

EOT

Example 2: From time to time, employee Smith is given a raise of $50.

An assertion on the database may require that employee Jones

always makes the same salary as employee Smith. Hence, the

salary of Jones must also be raised by $50 whenever the salary

of Smith is raised by $50. A transaction that does this is:

BOT

UPDATE (File-EMPLOYEE) A (Name-SMITH) <Salary=Salary+50>

UPDATE (File-EMPLOYEE) A (Name-JONES) <Salary=Salary+50>

EOT

3.2.4 Basic Requests vs. Aggregate Requests

We have thus far described the various basic types of requests of MDBS.

Detailed algorithms for the execution of the basic request types will be pre-

sented in Chapter 4, although, in Chapter 2 we had briefly described the execu-

tion sequence of the retrieve requests in MDBS. There, we had stated that a re-

trieve request would be initially broadcast from the controller to all the back-

ends over a bus and that the results would be output by each back-end to the con-

troller via the same bus. We will elaborate on the performance and the execution

sequences of all the basic types of requests in Chapter 4.

When an aggregate operator is included in a request, the execution of the

request takes additional complexity, since considerable computations must be per-

formed by MDBS on data aggregates for the request. For this reason, we study re-

quests employing aggregate operators. From now on, we will refer to requests

using aggregate operators as aggregate requests. Furthermore, we will analyze the

performance of MDBS in the execution of aggregate requests in Chapter 4.

3.2.5 In Meeting the Selection Criteria

In the beginning of this chapter, we stated three criteria which were to be

satisfied by a data model and the data manipulation language of the data model.
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The three criteria were intended for the selection of an ideal data model anc.

its data manipulation language for MDBS implementation. These criteria were re-

ferred to as the translation criterion, the partition criterion and the language

criterion.

The attribute-based model satisfies the selection criteria as we amply ar-

gued in the preceeding sections. In this section, we consider its data manipu-

lation language, DML, in terms of the selection criteria.

Of the three criteria, the partition criterion is to be met by the model

alone. Hence, we do not need to consider this criterion for DML. We shall

consider the remaining criteria for DML in the following paragraphs.

In (Bane8O], it was demonstrated that the data manipulation languages o:

the three prevailing data models - network, hierarchical and relational - co ild

be translated into the data manipulation language of a database cumputer, known

as DBC. The data manipulation language proposed in this chapter, i.e., DML,

properly contains all the features of the data manipulation language of DBC.

Hence, if the data manipulation languages of the three prevailing data models can

be translated into the data manipulation language of DBC, they can also be trans-

lated into DML. Thus, DML satisfies the translation criterion.

Finally, DML allows for the concurrent access of large volumes of data be-

cause it enables the user to specify queries in terms of boolean expression of

predicates. Consequently, DML satisfies the language criterion.

In conclusion, the proposed DML satisfies all the criteria indicated ir the

beginning of this chapter.
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4. THE PROCESS OF REQUEST EXECUTION

In Chapter 3, we had described the data manipulation language, DM1, used in

MDBS. In this Chapter, we will describe the process of DML request execution

from the time a DML request is first received by MDBS to the time the response

set of the request is returned to the user or user program.

Central to the discussion on request execution is the notion of a cluster.

This notion will be developed in Section 4.1. Here, we give a brief introduction

to the process of request execution. We first utilize the descriptors defined

in Chapter 3 as an equivalence relation to partition the database into equiva-

lence classes which are termed clusters. The equivalence relation guarantees

the following nice properties: Every record in the database belongs to one and

only one cluster of the database. By proper use of the descriptors, the clusters

may be formed in such a way that if a user needs to access a record belonging to

a cluster, the user is most likely to have the need to access all the other re-

cords belonging to that cluster. Thus, clusters serve as the basic units of ac-

cess in MDBS and every database is stored in MDBS as a collection of clusters.

The execution of a user request in ?IDBS proceeds typically in several distinct

phases as follows. In the first phase, MDBS will determine the exact clusters

of records which will satisfy the request. In the second phase, MDBS accesses

security information about the user in order to select for the user the author-

ized clusters among the clusters which have been determined in the first phase.

In the third phase, MDBS determines the secondary memory addresses of the author-

ized clusters selected in the second phase. in all these three phases, MDBS

makes no iccess to the records of the clusters selected. Instead, MflBS utilizes

auxiliar, information about the clusters and security. Such utilization of auxi-

liary information constitutes the directory management function of MDBS. After

the three phases of directory management, MDBS retrieves the clusters of records

which will satisfy the request.

The use of the data placement strategy in MDBS will ensure us that each

cluster (database) is stored in such a way that the records (clusters) of the

cluster (database) are evenly distributed across the multiple back-ends of MDBS.

Since all clusters are evenly distributed across the back-endsthe response set

of the request will be retrieved in a parallel fashion from the back-ends.

This completes our brief description of the processing of a request in MDBS. The

remaining sections of this Chapter are organized as follows. In Section 4.1, we

will develop the notion of a cluster. The data structures to be used for deter-
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mining the set of clusters which will satisfy a request, and the algo-

rithms necessary for such determination are also described in Section

4.1. In keeping with our findings in Chapter 2, each cluster is placed

according to the track-splitting-with-random placement policy which was

shown to be superior. In Section 4.2, we will describe two of the three

phases of the directory management. Phase 2 is dealing with security-

related directory management. Because of its importance and our new con-

tribution, it is discussed in Chapter 5. Several strategies for perform-

ing directory management are proposed and evaluated on the basis of a

criteria which strives for minimal processing time. These same strategies

are also evaluated, in Section 4.2, in terms of storage requirements. At

the end of Section 4.2, we will present our recommendations for a direc-

tory management strategy for M'DBS. In Section 4.3, we will describe the

execution sequences for the various DML requests that may be issued to

MDBS.

4.1 The Notion of Record Clusters

Record clusters are formed for the purposes of narrowing the search space

and minimizing the effort needed to retrieve records which may satisfy a given

request. In other words, by organizing a database into clusters and by maintain-

ing information about these clusters, MBS may readily identify those clusters

whose records will satisfy the given request, thereby achieving high throughput

and good response time.

Although the notion of a record cluster for the above-mentioned purposes

is well known, the effectiveness of clusters for throughput gain and response-

time improvement lies in the effectiveness of the clustering algorithm f or forming

clusters and, more importantly, the placement strategy for storing these clusters.

In other words, it depends on how clusters are formed and placed. Interestingly

enough, It does not depend on how clusters are used. In other words, the through-

put and response time of MDBS are 'immune' from the way the clusters are utilized.

This is because every request execution by MDBS will involve the search and re-
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maximal for throughput gain and response-time improvement. We will comment

on this point briefly herein and elaborate on the point thoroughly in the

later sections. Briefly, this is due to our use of the descriptors as a means

to define and form clusters. As we recall from Chapter 3, a descriptor is

either a single predicate or a conjunction of predicates. We may also re-

call that a query in a user request is a boolean expression of predicates.

Thus, a given user request will require the retrieval of data which sati-

sfy the predicates of the expression. Since clusters are formed by the de-

finition of descriptors and both descriptors and queries utilize the com-

mon notion of predicates, the data retrieved for the request are actually

one or more clusters. Clusters therefore become the ideal formation (or

unit) of data for storage and retrieval and for performance optimization.

Our work on clusters is unique also in a couple of respects. First,

the clustering algorithms in our method will be executed in multiple back-

ends rather than at a single back-end as in all other work. Second, we

recongnize the importance which must be given to the placement of these

clusters across the multiple back-ends of MDBS.

In the following sections, we will describe how the clusters are formed

in MDBS and how they are used. We will begin with some definitions.

4.1.1 Cluster Formation

For a database, the creator of the database specifies a number of descriptors

called clustering descriptors, or simply, descriptors. An attribute that appears

in a descriptor is called a directory attribute. We say that a directory attri-

bute belongs to a descriptor if the attribute appears in that descriptor.

We recall that a record consists of attribute-value pairs or keywords. For

purposes of clustering, only those keywords of the record which contain directory

attributes are considered. Such keywords of the record are termed directory key

words. From the rules for forming descriptors specified in Chapter 3, it is easy

to see that a directory keyword is derivable from at most one descriptor.

For example, consider a database with Salary as the only directory attribute.

Furthermore, let (OfSSalaryE500) be the only descriptor Dl on Salary specified by

the database creator. Now, consider two records, one containing the directory
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Clearly, the former directory keyword is derivable from descriptor Dl and the

latter directory keyword is not derivable from Dl. Hence, the latter keyword is

not derivable from any descriptor in the database and we say that the directory'

keyword is derivable from no descriptor. Since a record may have many directory:

keywords, each of which will be derivable from at most one descriptor, we say

that the reccrd is derived from a set of descriptors. It is possible for a re-

cord to be derived from the empty set of descriptors. There are two such cases.

In the first case, it may happen that a record does not contain any directory

keyword. In this case, it is said that the record is derived from the empty

set of descriptors;. Thus, going back to the previous example with the single di-

rectory attribute, Salary, and the single descriptor, (Of-Salary-E5OO), a record

which does not contain any salary information (i.e., no keyword with the attribute

Salary) is said tc be derived from the empty set of descriptors. The second

case in~ which a record is derived from the empty set of descriptors is when

the record does indeed contain directory keywords, but these keywords are not

derivable from any descriptors. In the previous example, a record with the

directory keyword <Salary,750> which is not derivable from the descriptor is

therefore derived from the empty set of descriptors also.

If two records are derived from the same set of descriptors, they are likely

to be retrieved together in response to a user request, since these two records

have keywords whi.:h are derived from the same set of descriptors. Thus, these

two records should be stored together in the same cluster. A cluster is, there-

fore, a group of records such that every record in the cluster is derived from

the same set of descriptors. We say that a record cluster is defined by the set

of descriptors from which all records in the cluster are derived.

It is easy to see that a record belongs to one and only one cluster. The

reasoning is as follows. A record consists of zero or more directory keywords.

If it consists of zero directory keywords, it belongs to the cluster defined by

the empty set of descriptors. If t-he record consists of one or more directory

keywords, then, the record must be derived from one and only one set of descrip-

tors,since each directory keyword is derived from at most one descriptor. This

unique set of descriptors defines the unique cluster to which the record belongs.

Thus, we have used the concept of descriptor sets to partition the database

into equivalence classes, namely clusters. A formal proof of the above obser-

vations is included in an Appendix B.

In order to form clusters for the records in a database, an algorithm is
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provided herein which will take a record and determine its cluster. We will

describe this algorithm informally below. The detailed algorithm to be im-

plemented in MDBS for cluster formation will be presented in Appendix C.

The algorithm for determining the cluster to which a record belongs is as

follows. For each attribute-value pair in the recoed, determine if the at-

tribute is a directory attribute. If it is not, then that attribute-value pair

is not used for cluster determination. If the attribute is a directory attri-

bute, determine the descriptor, if any, from which it is derived. We refer to

this descriptor, if any, as the corresponding descriptor for the given attribute-

value pair. The set of corresponding descriptorE for all the attribute-value

pairs in a record defines the cluster to which the record belongs.

By using the algorithm on every record of a database at database-creation

time, we may form the record clusters of the database.

4.1.2 An Example of Cluster Formation

Consider the database and its descriptors shown in Figure 13. The figure

shows two files, accounts and assets. The accounts file has three records and

the assets file has two records. Also, the figure shows the five descriptors

specified on this database by the database-creator. The attributes, Number and

Balance, are type-A descriptors and the attribute, Location, is a type-C descrip-

tor. This type-C descriptor will '. converted into two type-B descriptors as

shown in Figure 14. There is no aescriptor for the attribute, Total, because no re-

quest with the attribute, Total, as part of a query is expected. The clusters

formed for this database and the records in each cluster are depicted in Figure 15.

The first row in Figure 15 is for cluster 1. The set of descriptors defining

this cluster is {D2, D3, D5}. Consider record Rl which belongs to this cluster.

It contains the keyword <Location, NAPA> which is derived from the descriptor D5

(Location-NAPA). Similarly, the keyword <Number,32123> is derived from D2 which

is (15000Number<-). Finally, the keyword <Balance,50> is derived from D3 which

is (05Balance<500). Hence, RI belongs to the cluster defined by D2, D3 and D5.

Similarly, it may be shown that R3 belongs to the same cluster. This explains

the first row in Figure 15. With similar exercises, we may verify the remaining

three rows in Figure 15.
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Accounts file:

(<Location,NAPA>, <Number,32123>, <Balance,50>)
(<Location,St. Helena>, <Number,5320>, <Balance,506>)
(<Location,NAPA>, <Number,36592>, <Balance, 287>)

Assets file:

(<Location,St. Helena>, <Total,506>)
(<Location,NAPA>, <Total,337>)

The database creator specifies the following descriptors:

Type-A Descriptors:

(0 <5 Number < 15000)
(15,000 _Numbere -)
(0 _ Balance < 500'
(500 i Balance < 1000)

Type-C Descriptor: location

* For simplicity, we refer to the three records of the accounts

file as RI, R2 and R3, respectively; and to the two records of
the assets file as R4 and R5, respectively.

Figure 13. A Database of Two Files and
its Clustering Descriptors
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Descriptors Specified by the Database-Creator as seen by MDBS

Descriptor Descriptor id

(0 -Number < 15,000) Dl

(15,000 !E Nuiber < D2

(0 - Balance < 500) D3

(500 - Balance < 1000) D4

(Location= Napa) D5

(Location= St. Helena) D6

The Descriptors Formed for the
Database of Figure 13

Figure 14. The Descriptor-to-Descriptor-Td Table (DDIT)
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The Clusters Formed for the Database of Figure 13

Records in the Cluster Defined
Cluster 7 Set of Descriptors* by the Descriptor Set**

1 {D2, D3, D5} RI, R3

2 (Dl, D4, D6} R2

3 {D61 R4

4 {D5} R5

* Actually, only descriptor ids are shown here,Togethpr with the

Descriptor-To-Descriptor-ld Table shown in Figure 14, MDBS maintains
the descriptor sets.

** In implementation, this column contains the secondary memory addresses
of RI, R2, R3, R4 and R5 with two addresses in the first row.

Figure 15. The Cluster-Definition Table (CDT)
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4.1.3 Clusters Determination During Request Execution

Up to this point, we have been describing the process of cluster formation.

We will now explain how clusters are used during request execution. More speci-

fically, we will explain how to determine the cluster to which a new record be-

longs and how to determine the set of clusters which must be retrieved in order

to satisfy a query for retrieval, deletion or update.

During the process of cluster formation described in the previous section,

MDBS uses an algorithm repeatedly for determining the cluster of a record in the

database. This same algorithm may now be used by MDBS to determine the cluster

of a record for the record insertion. In insertion, the cluster definition table

(CDT) is used in order to determine the secondary memory address (addresses) of

this cluster.

Next, let us describe how MDBS determines the set of clusters which satisfy

the query in a retrieval, deletion or update request. Before we may do this, we

must introduce some concepts and terminology.

Descriptor X is defined to be less than descriptor Y, if the attributes in

both desari)tors are the same and one of the following holds.

(1) Both descriptors are of type-A and the upper limit of descriptor X is

lower than the lower limit of descriptor Y.

(2) Both descriptors are of type-B and the value in descriptor X is smaller

t1an the value in descriptor Y.

(3) Descriptor X is of type-A and descriptor Y is of type-B and the upper

limit of descriptor X is lower than the value in descriptor Y.

(4) Descriptor X is of type-B and descriptor Y Is of type-A and the value

in descriptor X is smaller than the lower limit of descriptor Y.

An exactly parallel description for the greater-than relation among descrip-

tors may also be given. The above definition covers the case where either X or

Y is a type-C descriptor, since type-C descriptors are stored as type-b descrip-

tors in MDBS.

To illustrate the definition of less-than among descriptors, let us assume

that we are given the descriptors D1 (100Salary<200), D2 (OSalary<99),

D3 (Salary-99) and D4 (Salary200). Thus, D3 is less than Dl; D2 is less than

D3; and Dl is less than D4. The relation, less-than, is transitive. Hence, we

can define a partial ordering among descriptors. For example, the ordering

among these four descriptors is D2, D3, Dl and D4.

Using the above definition of less-than and greater-than for the descriptors,
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we are ready to describe the algorithm for determining the corresponding set of

clusters for a query in a user request. The query is assumed to be in disjunctive

normal form, i.e., disjunction of conjunctions. The algorithm will proceed in

three steps.

Since a query conjunction consists of predicates, we will determine, Ln the

first step, a corresponding descriptor or a corresponding set of descriptors for

each predicate. This is done as follows. If the predicate in a query conjunction

is an equality predicate, then the corresponding descriptor is the one from which

the keyword satisfying the predicate is derived. For example, if tha predicate

is Location-NAPA, then the keyword satisfying the predicate is <Locacion,NAPA>

and the corresponding descriptor is (Location-NAPA). If the predicate is either

a less-than or less-than-or-equal-to predicate, it is first treated as an equal-

ity predicate and the corresponding descriptor D for that equality predicate is

first determined. Then, all the descriptors less than D, along with D, form

the corresponding set of descriptors for the less-than or less-than-or-equal-to

predicate. If the predicate is a greater-than or greater-than-or-equal-tc pre-

dicate, then it is first treated as an equality predicate and the correspcnding

descriptor D for that equality predicate is first determined. Then, all the

descriptors greater than D, along with D, form the corresponding set of descrip-

tors for the greater-than or greater-than-or-equal-to predicate. Thus, we have

determined a corresponding set of descriptors for a predicate.

The above procedure is repeated for every predicate in the query conjunc-

tion. Thus, we will have determined a corresponding set of descrIptors for

every predicate in a query conjunction.

Our next step is to determine the corresponding set of clusters for a

query conjunction, since a query consists of one or more query conjunctions. Let

the query conjunction have p predicates. Let the set of descriptors corres-

ponding to the i-th predicate be Si . Now, form all possible groups, where each

group consists of one descriptor from Si for i ranging from 1 to p. In other

words, we are forming the cross-product of Si. The reason for forming this cross-

product of p sets is because a query conjunction consists of a conjunction of p

predicates, each of which has a corresponding set Si of descriptors. Each element

in this cross-product is termed a descriptor group which is of course a set of

descriptors. Intuitively, a group defines a set of clusters whose records satisfy

the query conjunction.

We recall that MDBS maintains a table, known as the Cluster definition table,
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which is created at the database creation time. (See Figure 15 again for an

example). However, the definitions kept in the table may not be identical to

the definitions of the groups. Without relating the descriptor groups with

the descriptor sets kept in the table, we may not be able to determine the

clusters involved. Thus, this second step includes the determination of whether

there are descriptor sets in the table which contain a descriptor group. If

there are such sets, then the clusters defined by the descriptor sets are in-

deed the clusters referred to by the descriptor group.

By repeating this procedure for every descriptor group in the cross-product,

we are able to determine the corresponding set of clusters for a query con-

junction. The entire second step which is used to determine the corresponding

set of clusters for a query conjunction is then repeated for every query con-

junction in the query. Thus, we have determined a corresponding set of clus-

ters for every query conjunction in the query.

The final step of the algorithm determines the corresponding set of clusters

for the query from the corresponding set of clusters for each query conjunction

in the query. Since the query is a disjunction of conjunctions, the correspond-

ing set can be simply obtained as the union of the sets of clusters for each

query conjunction in the query.

The three steps involved in this algorithm are illustrated with an example

in the following section and formally specified in Appendix C.

4.1.4 An Example of Clusters Determination During Request Execution

Our example is developed around the database and descriptors of Figures 13

and 14. Consider that the following retrieve request is received by MDBS.

RETRIEVE ((Location-St.Helena) A (Balance=506)) v (Number<5500)(Balance)

Clearly, the corresponding descriptor for the predicate (Location-St. Helena) is

D6 and that for the predicate (Balance-506) is D4. Similarly, the corresponding

descriptor for the predicate (Number<5500) is Dl. We complete the first step of

the algorithm for determining the corresponding set of descriptors for each pre-

dicate.

In the next step, we need to determine the corresponding set of clusters

for each query conjunction. Consider the first query conjunction, (Location-

St. Helena) A (Bal-ince-506). The only descriptor group that can be formed for

this query conjunction is {D6, D4}. In searching the entries of the descriptor
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definition table depicted in Figure 15, we discover that there is onl.V one

descriptor set which contains the descriptor group. It is the set {D, D4, Db}.

The cluster defined by {Dl, D4, D6}, i.e., cluster 2, is the only member of the

corresponding set of clusters for the first query conjunction. Similarly, we

determine the corresponding set of clusters for the second query conjunction,

(Number<5500). It so happens that cluster 2 is also the only member of the correspond-

ing set of clusters for the conjunction. Thus, we complete the second step of

the algorithm.

In the final step of the algorithm, the union of all members of the corres-

ponding sets of clusters of the query conjunctions is still cluster 2. Thus,

cluster 2 constitutes the only member of the corresponding set of clusters for

the given query. Once the corresponding set of clusters is determined, the

addresses of the records in the clusters may be used for access to the secondary

memory.

4.2 Directory Management

The entire sequence of actions taken by MDBS from the time a record-insertion

request is received to the time that the cluster to which the record is to be in-

serted is determined (i.e., the secondary memory address or addresses are generated)

is referred to as directory management for an insert request. Similarly, the .en-

tire sequence of actions taken by MDBS from the time a retrieve, delete or update

request is received to the time the corresponding set of clusters for the auery 4T

the request and their addresses in the secondary memory are generated is referred

to as directory management for a non-insert request. Together, they constitute the

directory management of MDBS.

We repeat that the directory management in MDBS consists of three major

phases. In the first phase, MDBS determines the exact clusters of records

which will satisfy the user request. This phase was described in the previous

section. The algorithm used in this phase for determining the clusters was

briefly described in the previous section and in detail in an appendix. In the

second phase, MDBS accesses security information about the user in order to se-

lect for the user the authorized clusters among the clusters which have been
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determined in the first phase. This discussion is relegated to Chapter 5. In

the third phase, MDBS determines the secondary memory addresses of the author-

ized clusters selected in the second phase.

4.2.1 Two phases of Processing - Descriptor Processing and Address Generation

For implementation of the directory management function, we recall that

the cluster definition table CDT is used to determine the corresponding set of

clusters for a query. At the same time, the secondary memory addresses of the

corresponding set of clusters may also be found,since these addresses are pre-

sent in the third column of CDT (see again Figure 15). However, we want to

ensure that only the secondary memory addresses of the authorized clusters for

a user are utilized. This is achieved by augmenting CDT of Figure 15 with

several more columns of security-related information, one column for each user

of the database. The details of the kinds of security-related information

maintained for each user are given in Chapter 5. Thus, in implementation of

the directory management function, the three Phases described above may be

elaborated as follows: In the first phase, the descriptor-to-descriptor-id

table D)DIT Is @&A dhed to determine the corresponding descriptor or descriptors

for each predicate of a query in the case of a non-insert request and for each

keyword of a record in the case of an insert request. In the sequel, we shall

refer to this phase as the descriptor search phase and we shall refer to the
processing performed therein as descriptor processing. In the next step, the

augmented CDT is searched and the corresponding single cluster in the case of

an insert request or the corresponding set of clusters in the case of a non-

insert request is determined. Once the cluster or cluster set is determined,

the authorized cluster or clusters may be selected on the basis of security-

related information in the augmented CDT. By searching the same augmented

CDT, the addresses of authorized cluster(s) can be found. We shall refer to

this step, in the sequel, as the address generation phase and we shall refer

to the processing performed therein as address generation. Thus, the three

phases of directory management are now consolidated in two.

Since the descriptor search phase and the address generation phase are

similar for both insert and non-insert requests, in the sequel we shall only

consider these two phases for non-insert requests. The discussion extends

in a straightforward manner to insert requests.

4.2.2 Processing Strategies for Multiple Back-ends

In previous discussions, we make no distinction whether the two phases

were to be carried out in a single computer or in multiple computers (a con-

troller and several back-ends). It is now necessary to discuss how these two
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phases will be executed in the controller and multiple back-ends of MDBS.

We have identified f or MDBS six different strategies f or carrying out the

descriptor search phase in the multiple back-ends and one strategy for

carrying out the descriptor search phase in the controller, thereby a total

of seven strategies are identified for various ways of carr)ing out the descrip-

tor search phase. We have also identified two s~rategies, one for carrying out

the address generation phase in the controller, the other in the back-ends.

For completeness, we also consider an eighth strategy for directory management

in which both phases are carried out in the controller. These eight strategies

for directory management are proposed and evaluated in the next sections.

Let us first, however, indicate our preference for a strategy in which the

address generation phase is carried out in multiple back-ends rather than in

the controller. By carrying out this phase in the back-ends, MBS will be al-

leviated from the controller limitation problem. Since this phase deals with the

generation of secondary memory addresses, each back-end would need to gener-

ate only those secondary memory addresses associated with that back-end. on

the other hand, if the addresses were to be generated by the controller, the

controller would need to generate all the relevant secondary memory addresses

associated with the entire back-ends. Thus, it is easy to see that the work

of address generation is evenly divided up among the back-ends in the former

case. This is essential if we are to achieve an ideal system in which the re-

sponse time is inversely proportional to the number of back-ends. This con-

clude~s our discussion of our preference for a strategy in which the address

generation phase is carried out in the multiple back-ends.

We note that the address generation phase actually includes all security

related processing also. The time f or address generation, which is essentially

the time for searching the augmented CDT, will depend on the size of each entry

in the augmented CDT. Hence, it will depend on whether or not the table is

augmented with security information. In the sequel, our analysis will assume

that no security information is contained in the CDT. There are two reasons

for this assumption.

First, we wish to analyze the performance of an MDBS in which security is

not enforced. This is because many implementations of MDBS may wish to provide

only the basic database management functions and may not wish to provide se-

curity enforcement.

Second, the enforcement of security will not affect our comparative study
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of the various strategies, since all the back-ends are expected to spend the

same amount of work in security-related processing.

We now proceed to discuss the eight different strategies for directory

management in the following sections. We propose various strategies for dir-

ectory management in terms of descriptor searching and address generation.

These alternatives will be evaluated from the viewpoint of performance and sto-

rage requirements.

A. The Centralized Strategy

In this strategy, all the directory management is done at the controller.

The controller maintains the descriptors for all the directory attributes.

In other words, both DDIT and the augmented CDT are stored with the controller.

Given a query, the controller first performs the descriptor processing and

then address generation by utilizing the aforementioned tables. Eventually,

a set of secondary memory addresses of relevant records is generated at the

controller. We note that a secondary memory address consists of not just the

track and cylinder information about the records but also the information about

the back-end in which the track and cylinder are located. None of the remaining

seven strategies will need the back-end information in a secondary m~miory ad-

dress. This is because all the remaining strategies will do the address gener-

ation at the respective back-end rather than at the controller.

B. The Partially Centralized Strategy

The descriptor processing is done at the controller in this strategy as

in the previous strategy. The corresponding descriptors are then broadcasted

to all the back-ends. Each back-end will now carry out the address generation

phase in an independent fashion. The reason why we expect this strategy to be

superior to the previous strategy is two-fold. First, the work of address

generation that could be done at the controller is now distributed to the back-

en'ds. This should alleviate the controller limitation problem. Second, the

work needed for address generation is divided in such a way that a back-end

needs only to generate the addresses of the secondary memory of that back-end.

In this strategy, the descriptor search phase of the directory management is

still performed at the controller. The six remaining strategies we will con-

sider are those which try to diminish the effect of having this descriptor search

phase performed solely at the controller. In other words, the following stra-
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tegies will alleviate the controller limitation problem further.

C. The Rotating Strategy

In the rotating strategy, the descriptor processing during the descrip-

tor search phase is done in a round-robin fashion among the controller and

the back-ends. More specifically, the first query is processed at the con-

troller, the second query is processed at the first back-end, the third query

is processed at the second back-end, and so on. As a result, it is hoped that

some alleviation of the controller limitation problem will take place. As in

the partially centralized strategy, the address generation is done individually

at each back-end. When the arrival rate of requests to MDBS is low,

this strategy will not perform any better than the partially centralized stra-

tegy. On the other hand, when the arrival rate of request is high, this

strategy may lead to an improvement in performance over the partially centra-

lized strategy. This is because the descriptor processing on a number of queries

by multiple back-ends may be overlapped while the descriptor processing on in-

dividual queriEs by the controller must be done sequentially in the partially

centralized strategy.

D. The Rotating Without Controller Strategy

This strategy is very similar to the previous one. The only difference

is that ro descriptor processing is done at the controller. Thus, the descrip-

tor processing for the first query is done at the first back-end, the descrip-

tor processing for the second query is done at the second back-end, and so on.

After descriptor processing is completed at a back-end, the corresponding des-

criptors must be broadcast to all back-ends so that they may proceed with the

address generation phase. The only reason for introducing this strategy into

consideration is that it would appear to alleviate the controller limitation

problem completely from directory management.

We note that both the rotating with controller and the rotating without

controller strategies require the duplication of the necessary tables (i.e.,

DDIT) at all back-ends. This is tolerated for the following

reasons. It will be shown, later, that the tables needed for address genera-

tion are very much larger than the tables needed for descriptor processing. As

a result, duplicating the tables needed for descriptor processing for multiple

back-end is tolerable. Furthermore, we are willing to sacrifice storage, if

it means an improvement in performance.
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Up to this point, two of the strategies allow queries to be processed

parallelly in the descriptor search phase. There is no parallel descriptor

processing of predicates for a given query. In the following three strategies,

we explore the possibility of parallel descriptor processing of predicates for

individual queries during the descriptor search phase.

E. The Fully Duplicated Strategy

In the fully duplicated strategy, the descriptor processing is done across

the back-ends. More specifically, if there are n back-ends in MDBS and a

query contains x predicates, each back-end will process x/n predicates and

generate x/n corresponding descriptors which will-in turn, be communicated to

each other. Each back-end may then proceed to the address generation phase.

Such a strategy also requires the necessary tables to be duplicated at Pa.

back-end.

F. The Descriptors Dividing by Attribute Strategy

In this strategy, we explore the possibility of achieving parallel d

criptor processing without the need for any duplication of necessary tableb.

If there are i directory attributes and n back-ends in MDBS, each back-end will

maintain the descriptors corresponding to i/n attributes. Each back-end will

process those predicates in a query where the descriptors corresponding to the

attribute in the predicate is maintained at that back-end. It is expected that

each back-end will do an equal amount of descriptor processing, although there

may be cases where one back-end does more descripter processing than the others.

This happens if all the predicates in a query are such that the descriptors

that need to be searched are all stored at tba. same back-end.

G. The Descriptors Division Within Attribute Strategy

Like the previous strategy, this strategy also attempts parallel descriptor

processing without any duplication of the necessary tables. If there are i des-

criptors on each directory attribute, each back-end will maintain for each attrib-

ute i/n descriptors. Thus, descriptor processing is spread over the back-ends.

All back-ends will participate in the descriptor processing of a query. After each

back-end obtains some results, they exchange their results. Then, each back-end

preceeds with its own address generation phase.

H. The Fully Replicated Strategy

This is the final strategy we consider for doing directory management. In
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this strategy. each back-end will work On the entire query during the descrip-

tor search phase. The advantage o~f letting each back-end do the descriptor

processing on all queries is that., unlike the previous three strategies, ex-

changes among back-ends are unnecessary in this strategy because all back-ends

.1 have all the needed results. After completing the descriptor processing, each

back-end does its address generat:.on.

4.2.3 Performance Evaluation of the Directory Management Strategies

In this section, we compare t~he eight strategies for directory management

on the basis of performance. For our convenience, we name these strategies A

through H, respectively.

Two different approaches are used for the performance analysis. The first

approach considers the directory management process alone. It does not consider

the fact that there may be queues at the various back-ends and that the control-

ler may allow overlapping of quer; handling for directory management. Specifically,

the different strategies are compared in terms of the time duration from the re-

ceipt of a request to the point wiere all the necessary secondary memory addresses

are generated, including the time taken for messages exchanges.

The second approach studies the relative response time for a typical re-

quest when each of these eight strategies is employed for directory management.

In other words, the directory management is considered in 2arms of its effect

on the overall response time of a request. This study employs a closed queueing

network mrodel of MDBS.

One issue that is important to both approaches is whether the necessary

tables for descriptor processing and address generation can be stored in the

main memory. In our analysis, we assume that a page of the descriptor-to-

descriptor-id table DDIT is in the main memory with probability p, where p is

high. This is because DDIT is small. For the augmented cluster definition

table, i.e., the augmented CDT, on the other hand, we assume that only a cer-

tain amount of the main memory, m, is reserved for th, table. Now, if the

augmented CDT requires greater amount of memory, g, then pages of the augmented

CDT are assumed to be in the main memory with probability 1. In general, I < p.
g g

Another issue to be resolved before we begin our analyses concerns the

searching of the descriptors. It is clearly possible to store the descriptors

in sorted order and search for the right descriptor using a binary search.

Another technique would be to store the descriptors as a B-tree, whose leaf nodes
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are the descriptors themselves. However, since the number of descriptors is

not expected to be very large, we shall assume that a hinary search is used.

A. Time Analyses and Performance Equations

In this section, we present the results for the execution time of the

directory management algorithms from the point that a query is received to the

point where the addresses of tI'e records are generated and made available at

the back-ends. This time therefore includes the time for descriptor processing

and address generation.

The following observations may be used to simplify our calculations.

First, the centralized strategy and the partially centralized strategy differ

only in the address generation phases. Clearly, the partially centralized stra-

tegy takes less time for address generation and, hence, is superior to the cen-

tralized strategy. We only need to compare the remaining strategies to deter-

mine the best one. All the remaining strategies use exactly the same algorithm

for address generation. Hence, the time for address generation need not be

included in our comparison study. With these observations, let us proceed with

our comparison study. Let,

tin: time to send a message from (to) the controller

D: total number of descriptors

i: total number of directory attributes

td: time to read a descriptor from the main memory

tp: time to read an entry from the DDIT in the main memory.

ta: time to read a predicate

x: number of predicates in a query conjunction

tpr: time for an arithmetic operation

k: number of descriptors per secondary memory page

tpg: time to access a secondary memory page

1g: logarithm of the base 2

u(z): the nearest integer greater than or equal to z

tb: time taken for doing a binary search on k descriptors

In the ensuing discussions, let us calculate the total time taken in order

to complete the descriptor search phase and have the corresponding set of des-

criptors available at all back-ends. That is, let us calculate the time taken

for directory processing and the time for exchanging any messages that may be

needed. For simplicity, we assume that users only employ single conjunctions
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in their requests. If a disjunction of p conjunctions is used in a request,

it may be easily treated as p separate requests.

In Strategies A, B, C, 1) and H, it is easy to see that the descriptor

processing on the entire query conjunction is done at a single computer. Thus,

the average-case time is expressed as follows

x(ta + (i/2)(tp + tpr) + lg((td + nr)D/i) + 2tpr) ------ (1)

Here is the explanation. For each of the x predicates in the conjunction, the

following must be done. First, the predicate rust ba read and this takes ta

time units. Next, the i entries in DDIT must be searched. On the average, i/2

entries will need to be searched. Each of the i/2 entries must be read (taking

tp time units each time) and compared with the attribute in the predicate

(taking tpr time units). Next, the set of D/L descriptors must be searched.

Our algorithm for a binary search of N descriptors i:3 included in ap-

pendix D. From the algorithm, the total time to do 'inary search on N des-

criptor is

2tpr + lgN(time to read a descriptor + 4tpr)

Thus, the time taken for doing a binary search on D/:' descriptors will take

2tpr + lg((td -4 tpr)D/'i)

Together, we obtain equation (1).

In arriving at equation (1), we assumed that all the descriptors are in the

main memory. Let us now improve equation (1) b, assuming that only a fraction

p of the descriptor pages are in the main memory. We assume that all the D

descriptors are stored in secondary-memory pages each of which contains up to

k descriptors. Also, descriptors for different attributes are stored in dif-

ferent pages. In searching descriptors organized as pages, we assume the fol-

loving algorithm is used. Pages are retrieved sequentially. For each page

retrieved, the ranges of the first and last descriptors in the page are compared

to the value in the predicate. This will tell us if the page contains the des-

criptor we are looking for. If so, a binary search of that page is performed.

If not, the next page is retrieved, and so on. Since the first page must be pro-

cessed before the second one is brought in and because the pages needed may not

be adjacent in the secondary memory, we assume no I/O overlap with CPU proces-

sing. Then, the time for descriptor processing is:

x(ta + (i/2)(tp + tpr) + (u(D/(2ik)) - 1)((l - p)tpg + 2(td + tpr))

+ ((1 - p)tpg + 2(td + tpr) + tb)) ------------- (2)
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in the average case. The worst-case time may be obtained from equation (2) by

replacing u(D/(2ik)) with u(D/(ik)) and (i/2)(tp + tpr) with i(tp + tpr). Here,

the time taken for doing a binary search on k descriptors, tb, is (2tpr

+ 1g k (td + 4tpr)).

Let tdr be the time taken for descriptor processing. Then tdr is equal to

above equation (2). Finally, the time taken for descriptor processing and mes-

sage exchanging in strategies A, B and H is

(tin + tdr)

where tim is the time taken to broadcast the corresponding descriptors from the

controller to the back-ends in strategies A and B, tm is the time to broadcast

the original query conjunction to all the back-ends each of which individually

spends tdr time units to calculate the corresponding descriptors in Strategy H.

In Strategy C, the time for descriptor processing and message exchanging is

(n/(n + 1)) * (tdr + 2tm) + (1/(n + 1)) * (tdr + tm)

This is explained as follows for a system with n back-ends. If the processing

is done in the controller and happens once every (n+ 1) times, the processing

must include the time for braodcasting the corresponding descriptors from the

confroller to the back-ends. On the other hand, if the processing is done at

one of the back-ends as happens n out of (n + 1) times, then the processing

time must include the time for sending the original query conjunction to a back-

end %nd the time for broadcasting the corresponding descriptors to all back-

ends from that back-end.

Finally, in Strategy D, the time for descriptor processing and message

exchanging is

(tdr + 2tm)

We now need to calculate the descriptor processing time for strategies E,

F and G. For Strategy E, the time for descriptor processing in the average

case is:

u(x/n)(ta + (i/2)(tp + tpr) + ((I- p)tpg + 2(td + tpr) + tb)

+ (u(D/(2ik)) - 1)((l-p)tpg + 2(td + tpr))) + 2tm ----------- (3)

The time for descriptor processing in the worst case may be obtained from equa-

tion 3 by replacing (i/2)(td + tpr) with i(tp + tpr) and u(D/(2ik)) with

u(D/(ik)). Time for two-message exchanges is also included in the above equation.
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One of the messages is for braodcasting the original query conjunction from

the controller to all the back-ends. The second one is for exchanging partial

results among the back-ends. We note that this method requires the presence

of all the descriptors at each back-end. Furthermore, no more than x back-ends

can be executing a query conjunction simultaneously, since there are x predi-

cates in the query conjunction. This is the maximum degree of parallelism that

can be brought to bear on the processing of descriptors.

Let us now present the descriptor processing and message exchange tine or

Strategy F as follows.

u(x/n)(ta + u(i/(2n))(tp + tpr) + ((l-p)tpg + 2(td + tpr) + tb)

+(u(D/(2ik))- 1)((!- p)tpg + 2(td + tpr))) + 2tm ---------------- (4)

The worst case time is obtained from equation by replacing u(x/n) with x,

u(i/(2n)) with u(i/n), and D/(21k) with D/(ik). In general, however, we expect

this strategy to perform at the time closer to the average-case tine than the

worst-case time. This is because the database administrator may use his know-

ledge of the typical query conjunctions to assign descriptors to back-ends in

an appropriate fashion.

Finally, the average-case time for descriptor processing and message exchange

by Strategy G is as follows.

x(ta + u(i/2)(tp + tpr) + ((l-p)tpg + 2(td + tpr) + tb)

+ (u(D/(2nik)-l)((l- p)tpg + 2(td + tpr))) + 2tm --------------- (5)

The worst-case time is obtained from equation 5 by replacing u(i/2) with i and

D/(2nik) with D/(nik). It is clear that for small values of D and large values of

k, increasing n is going to have little effect in reducing the time. For in-

stance, consider that the number of descriptors, D, is 100 and that the number

of descrirtors stored in a page, k, is 100. Then u(D/(nik)) = 1, irrespective

of the number of back-ends, n. Since u(D/(nik)) is the only expression in equa-

tion (5) which contains n, it is clear that increasing n is not going to reduce

the time for descriptor processing and message exchange. However, this strategy

should prove advantageous for large values of D.

B. Computations and Their Interpretations Resulted from the Performance
Equations

In order to compare the descriptor processing and message exchange times

of DBS under various strategies, we use the following values for the parameters

" , , ,- , ..6 I I I I II
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in the equations (1) through (5) to calculate the times.

tm - 8msecs (time to send a message from (to) the controller)
tpr - 5usecs (time for an arithmetic operation)
td - 5usecs (time to read a descriptor from the main memory)
ta - 31secs (time to read a predicate)
tp - 3usecs (time to read an entry from the DDIT in the main memory)
tpg - 47.3msecs (time to access a secondary memory page)
k - 85 (no. of descriptors per secondary memory page)
p - 0.9 (probability of a page of DDIT entries being in the main memory)
x = 5 (no. of predicates in a query conjunction)

The value of n, the number of back-ends, is chosen from the set {2, 5, 8}.

The ratio D/i, the number of descriptors per directory attribute, is chosen

from the set f10, 20, 30, 40). The number of directory attributes is chosen

from the set {5, 10, 151.

The results of our calculations are shown in Figure 16. In this figure,

we present two rows of results for each number of back-ends. The first row

gives the average-case times and the second row gives the worst-case times for

descriptor processing and message exchanging. It is seen that two of the three

strategies that utilize parallel processing of predicates of a given query

conjunction during the descriptors search phase, namely strategies E and F,

give the best average-case results. They consistently outperform all the other

strategies over the entire fange of variation which we tried for the number of

back-ends, the number of directory attributes and the number of descriptors per

attribute. The times under strategies E and F may be as much as 12 msecs less

than the time under the next best strategy. This occurs when the number of

back-ends employed is eight.

Looking at the worst-case results, we see that Strategy E is, once again,

the best strategy. The worst-case performance of Strategy F, however, is far

worse than that of Strategy E. This is because the worst case for Strategy F

occurs when all the predicates in a query conjunction are such that the des-

criptors that need to be searched for descriptor processing are all stored at

a single back-end. Thus, all the descriptor processing is performed at this

single back-end and parallel descriptor precessing is not achieved. In Strat-

egy E, on the other hand, the duplication of descriptors allows us to achieve

parallel descriptor processing for all types of query conjunctions.

In addition, the following observations may be made from the results of

Figure 16. Under Strategies E and F, the performance of MDBS improves with an

increase in the number of "ick-ends. However, this improvement will not go fur-

ther if the number of back-ends is greater than the number of predicates in a query
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Number of Attributes - 5
Number of Descriptors Per Attribute - 10

Strategy 1- - H

Bak~A B C D E F C

2 32.74 32.74 38.07 140.74 30.84 30.82 40.74 32.74
5 32.82 32.82 38.15 140.82 30.89 40.74 40.82 32.82

5 32.74 32.74 39.40 40.74 20.95 20.93 40.74 ! 32.74
32.82 32.82 39.48 40.82 20.96 40.66! 40.82 32.82

8 32.74 32.74 I 39.85 40.74 20.95 20.93 40.741 32.74
32.821 32.82 1 39.93 I 40.82 1 20.96 1 40.66 40.82 32.82

Number of Attributes - 5
Number of Descriptors Per Attribute - 20

Strategy
Back- A B C D E F H

ends

2 32.74 32.74 38.07 140.74 30.84 30.82 40.74: 32.74
32.82 32.82 38.15 40.82 30.89 40.74 j40.821 32.82

5 32.74 32.74 39.40 40.74 20.95 20.93 40.741 32.74
32.82 32.82 39.48 40.82 20.96 40.66 140.82 32.82

8 32.74 32.74 39.85 40.74 20.95 20.93 40.74 32.74
32.82 32.82 39.93 40.82 20.96 40.66 140.82 32.82

Number of Attributes = 5
Number of Descriptors Per Attribute - 30

Strategy;

Back-A B C D E F G H

2 i 32.74 32.74 38.07 40.74 30.84 30.82 40.74 32.74
32.82 32.82 38.15 40.82 30.89 40.74 40.82 32.82

5 I 32.74 32.74 39.40 40.74 20.95 20.93 40.74 32.74
32.82 32.82 39.48 40.82 20.96 I 40.66 40.82 32.82

8 32.74 32.74 39.85 40.74 20.95 120.93 40.74 32.74
I 32.82 32.82 39.93 40.82 20.96 40.66 40.82 32.82

Note: There are two rows corresponding to each value of the number of back-
ends. The first row gives the average-case times and the second row
gives the worst-case times.

Figure 16. Directory-Processing-and-Message-Exchanging 'imes
(in msecs) Under Different Strategies
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Number of Attributes -5
Number of Descriptors Per Attribute - 40

StrategyE - -

Back- A B C D E F G H
ends

2 32.74 32.74 38.07 40.74 30.84 30.82 40.74 32.74
32.82 32.82 38.15 40.82 30.89 40.74 40.82 32.82

5 32.74 32.74 39.40 40.74 20.95 20.93 40.74 32.74
32.82 32.82 39.48 .40.82 20.96 40.66 40.82 32.82

8 32.74 32.74 39.85 40.74 20.95 20.93 40.74 1 32.74
1 1_____ 32.82, 32.82 39.93: 40.82, 20.96, 40.66 140.82 132.82

Number of Attributes = 10
Number of Descriptors Per Attribute -10

Strategy
3a - llA B C D E F G H

ends 1

2 32.82 32.82 38.15 40.82 30.89 30.84 40.82 32.82
33.02 33.02 38.35 41.02 31.01 40.82 41.02 33.02

5 32.82 32.82 39.48 40.82 20.96 20.93 40.82 32.82
33.02 33.02 39.68 41.02 21.00 40.70 41.02 33.02

8 32.82 32.82 39.93 40.82, 20.96 20.93 40.82 32.82
133.021 33.02 140.13 4.1021L 21.00 140.701 41.02 133.02

Number of Attributes - 10
Number of Descriptors Per Attribute -20

__- --,

BakStrategy A B C D E F G H

ervis__ _ ____ ____ _ _ _ -_ _ _

2 32.82 32.82 38.15 40.82 30.89 30.84 40.82 32.82
33.02 33.02 38.35 41:02 31:01 40.82 41-02 33.02

5 32.82 32.82 39.48 40.82 20.96 20.93 40.82 32.82
33.02 33.02 39.68 41.02 21.00 40.70 41.02 33.02

8 32.82 32.82 39.93 40.82 20.96 20.93 40.82 32.82
33.02 33.02 40.13 41.02 21.00 40.70 41.02133.02

Number of Attributes - 10
Number of Descriptors Per Attribute -30

Strategy

Back- A B IC D E F G H
ends

2 32.82 32.82 38.15 40.82 30.89 30.84 40.82 32.82
33.02 33.02 38.35 41.02 31.01 40.82 41.02 33.02

5 32.82 32.82 39.48 40.82 20.96 20.93 40.82 32.82
33.02 33.02 39.68 41.02 21.00 40.70 41.02 33.02

8 32.82 32.82 39.93 40.82 20.96 20.93 40.82 32.82
_______33.02 33.02 40.13 141.02 21.00 40.70 41.02 33.02

Figure 16. (Contd.)
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Number of Attributes - 10
Number of Descriptors Per Attribute - 40

7rategy A B C D E F G H
Back-

ends N.I

2 32.82 32.82 38.15 40.82 30.89 30.84 40.82 32.82
33.02 33.02 38.35 41.02 31.01 40.82 41.02 33.02

5 32.82 32.82 39.48 40.82 20.96 20.93 40.82 32.82
33.02 33.02 39.68 41.02 21.00 40.70 41.02 33.02

8 32.82 32.82 39.93 40.82 20.961 20.93 40.82 32.82
33.02 33.02 40.13 41.02 21.00 40.70 41.02 33.02

Number of Attributes = 15
Number of Descriptors Per Attribute = 10

strategy -. F C H

Back- A B CE F G H

ends

2 32.94 32.94 38.27 40.94 30.961 30.87 40.94 32.94
33.22 33.22 38.55 41.22 31.13 40.94 41.22 33.22

5 32.94 32.94 39.60 40.94 20.99 20.94 40.94 1 32.94
33.22 33.22 39.88 41.22 21:04 40.74 41.22 33.22

8 32.94 32.94 40.05 40.94 20.99 20.93 40.94 32.94
_ 33.22 33.22 40.33 41.22 21.04 40.70 41.22 33.2

Number of Attributes - 15
Number of Descriptors Per Attribute = 20

Strategy A D

A B C E F G HBan *-
end -

2 32.94 32.94 38.27 40.94 30.96 30.87 40.94 32.94
33.22 33.22 38.55 41.22 31.13 40.94 41.22 33.22

5 32.94 32.94 39.60 40.94 20.99 20.94 40.94 32.94
33.22 33.22 39.88 41.22 21.04 40.74 41.22 33.22

8 32.94 32.94 40.05 40.94 20.99 20.93 40.94 32.94
33.22 33.22 140.33 41.221 21.04 40.70 41.22 33.22

Number of Attributes = 15
Number of Descriptors Per Attribute - 30

Strategy
Back- A B C D E F G H

2 32.94 32.94 38.27 40.94 30.96 30.87 40.94 ;32.94
33.22 33.22 38.55 41.22 31.13 40.94 41.22 33.22

5 32.94 32.94 39.60 40.94 20.99 20.94 40.94 32.94
33.22 33.22 39.88 41.22 21.04 40.74 141.22 33.22

8 32.94 32.94 40.05 40.94 20.99 20.93 140.94 32.94

3.22 33.22 40.33 41.22 21.04 40.70 41.22 33.22

Figure 16. (Contd.)
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Number of Attributes - 15
-Number of Descriptors Per Attribute - 40

Strategy

A B C D E F G H

ends

2 32.94 32.94 38.27 40.94 30.96 30.87 40.94 32.94
33.22 33.22 38.55 41.22 31.13 40.94 41.22 33.22

5 32.94 32.94 39.60 40.94 20.99 20.94 40.94 32.94
33.22 33.22 39.88 41.22 21.04 40.74 41.22 33.22

8 32.94 32.94 40.05 40.94 20.99 20.93 40.94 32.94
1 33.22 33.22 40.33 41.22 21.04 40.70 41.22 33.22

Figure 16. (Contd.)
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conjunction. The performance of MDBS under other strategies, do not improve

with increasing number of back-ends. Thus, these other strategies are not

suitable for implementation in MDBS.

The results of Figure 16 do not clearly indicate whether performancu of

MDBS under any strategy is independent of the number of descriptors per direc-

tory attribute. To test whether the performance of MIDBS is independent of the

number of descriptors per attribute, we make a second set of calculations with

the number of descriptors per attribute varying between 100 and 200. The re-

sults are shown in Figure 17. Comparing corresponding entries in Figure lb with

the ones in Figure 17, we see tiat the increasing number of descriptors per at-

tribute affects the performance considerably. Also, we see that Strategies E

and F provide the best average-case results. In fact, differences as large as

30 msecs are now possible between these two strategies and the remaining

strategies. Interestingly enough, the performance of Strategy G is now compar-

able to that of Strategies E and F.

We make a final set of calculations with the number of descriptors per at-

tribute varying from 700 to 900. Of course, this may be an unreasonably large

range of values for the number of descriptors per attribute. However, we are

interested in the results of this calculation from a point of view where MDBS

is heavily loaded and utilized. The results, shown in Figure 18, indicate

that Strategy G is now comparable to, and occasionally even better than,

Strategies E and F. By and large, these three strategies which employ parallel

processing of predicates cy multiple back-ends during the descriptor search nilase

outperform the other strategies.

C. A Preliminary Conclusion Based on the Performance 7quations

The results of our study may be summarized as follows. The three Strategies -

namely, Strategies E, F and G, which utilize parallel processing of predicates

of a query conjunction during the descriptor search phase,may provide better

performance than the other five strategies. Furthermore, the employment of

any of these strategies in MDBS leads to an improvement in performance with each

increase in the number of back-ends. However, the extremely poor worst-case per-

formance of Strategy F would eliminate it from consideration for MDBS implemen-

tation. Similarly, the poor average-and-worst case performance of Strategy C

for typical values of number of attribute and number of descriptors per attribute

would eliminate it from consideration for MIBS implementation. Consequently,
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Number of Attributes -5
Number of Descriptors Per Attribute - 100

Strategy;
A B C D E F G HBack-

ends

232.74 32.74 38.07 40.74 30.84 30.82 40.74 32.74
56.57 56.57 61.90 64.57 45.14 64.49 40.82 56.57

5 32.74 32.74 39.40 40.74 20.951 20:93 40.74 32.74
56.57 56.57 63.23 64.57 25.711 64.41 40.82 56.57

8 32.74 32.74 39.85 40.74 20.951 20.93 40.74 32.74
56.57 56.57 63.68 64.57 25.71 64:41 140.82 56.57]

Number of Attributes -5
Number of Descriptors Per Attribute =200

Strategyi

[Back- A B C D E F G H
ends _____ 

_

2 56.49 56.49 61.82 64.49 45.09 45.07 40.74 56.49
80.32 80.321 85.65 88.32 59.39 88.24 40.82 8).32

5 56.49 56.491 63.15 64.49 25.70 25.68 40.74 56.49
80.32 80.321 86.98 88.32 30.46 88.16 i 40.82 I83.32

8 56.49 56.49 63.60 64.49 25.70 25.68 40:74 I56.49
180.32 80.32 87.43 188.32 130.461 88.16 40.82 83.32

Number of Attributes 5
Numiler of Descriptors Per Attribute =300

Itaey A B C D IE F GH

ends4

2 56.49 56.491 61.82 64.49 45.09 45.07 40.74 56.49
104.07 104.07 109.40 112.07 73.64, 111.99 j40.82 104.07

5 56.49 56.49 63.15 64.49 25.70 25.68 40.74 56.49
104.07 104.07 110.73 112.07 35.21 111.91 j40.82 104.07

8 56.49 56.491 63.60 64.49 25.70 25.68 40.74 56.49
1104.07 1104.07 1 111.18 112.07 35.21 111.91 40.821104.07

Note: There are two rows corresponding to each value of the number of back-
ends. The first row gives the average case times and the second row
gives the worst case times.

Figure 17. Descriptor Processing and Message Exchanging Times
(in msecs) for Various Directory Management Strategies
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Number of Attributes - 10
Number of Descriptors Per Attribute = 100

Strategy
Back- A B C D

endsE F H
2 32.82 32.82 38.15 40.82 30.89 30.84- -0.2 32.82

56.77 56.77 62.10 64.77 45.26 64.57 41.02 56.77
5 32.82 32.82 39.48 1 40.82 20.96 20.93 40.82 32.82

56.77 56.77 63.43 64.77 25.75 64.45 41.02 56.77
8 32.82 32.82 39.93 40.82 20.96 20.93 40.82 32.82

56.77 56.77 63.88 64.77 25.75 64.45 41.02 56.77

Number of Attributes 10

Number of Descriptors Per Attribute 200

St ategy - -

Back- A B C D E F G H
ends -__

2 56.57 56.57 61.90 64.57; 45.14 45.09 40.82 56.57
80.52 80.52 85.85 88.52 59.51 88.32 i 41.02 80.52

5 56.57 56.57 63.23 64.57 25.71 25.68 40.82 56.57
80.52 80.52 87.18 88.52 30.50 88.20 41.02 80.52

8 56.57 56.57 64.68 64.57 25.71 25.68 50.82 56.57
80.52 80.52 87.63 88.52 30.50 88.20 41.02 80.52

Number of Attributes = 10

Number of Descriptors Per Attribute = 300

Strategy A B D E H

A B C D E F G
ends 

_ _ _____2 56.57 56.57 61.90 64.57 45.1.4 45.09 40.82 56.57
104.27 104.27 109.60 112.27 73.76 112.07 41.02 104.27

5 56.57 56.57 63.23 1164.,7 25.71 25.68 40.32 56.57
102.37 104.27 110.93 112.27 35.25 1111.95 1 41.02 '104.27

8 56.57 56.57 63.68 64.57 25.71 25.68 40.82 56.57
104.27 104.27 111.38 1112.27 35.25 1111.95 41.02 104.27

Number of Attributes - 15
Number of Descriptors Per Attribute = 100

~~Strategy
ack- 3 C D E F H
jends

2 32.94 32.94 38.27 40.94 30.96 30.87 40.94 32.94
56.97 56.97 62.30 64.97 45.38 64.69 41.22 56.97

5 32.94 32.94 39.60 40.94 20.99 20.94 40.94 32.94
56.97 56.97 63.63 64.97 25.79 64.49 41.22 56.97

8 32.94 32.94 40.05 40.94 20.99 20.93 40.94 32.94
56.97 56.97 64.08 64.97 25.79 64.45 41.22 I 56.97

Figure 17. (Contd.)
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Number of Attributes 15
Number of Descriptors Per Attribute 200

Strategy
Bk-A B C D E F G H

ends

2 56.69 56.69 62.02 64.69 45.21 45.21 40.94 56.69
80.72 80.72 86.05 88.72 59.63 88.44 41.22 80.72

5 56.69 56.69 63.35 64.69 25.74 25.69 40.94 56.69
80.72 80.72 87.38 88.72 30.54 88.24 41.22 80.72

8 56.69 56.69 63.80 64.69 25.74 25.68 40.94 56.69]80.72 80.72 87.83 88.72 30.54 188.20 141.22 80.72

Number of Attributes 15
Number of Descriptors Per Attribute 300

rStraegy
Back- A B C D E F G H

ends

2 56.69 56.69 62.02 64.69 45.21 45.12 40.94 56.69
104.47 104.47 109.80 112.47 73.88 112.19 41.22 104.47

5 56.59 56.69 63.35 64.69 25.74 25.69 40.94 56.69
104.47 104.47 111.13 112.47 35.29 111.99 41.22 104.47

8 56.69 56.69 63.80 64.69 25.74 25.68 40.94 56.69
1104.47 1104.47 111.58 1112.47 135.29 111.95 41.22 104.47

Figure 17. (Contd.)
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Number of Attributes = 5
Number of Descriptors Per Attribute = 700

Strategy I F H

Back- A B C D F H -

ends ... .

2 127.74 127.74 133.07 135.74 87.84 87.82 88.24 127.74
222.82 222.82 228.15 230.82 144.89 230.74 88.32 222.82

5 127.74 127.74 134.40 135.74 39.95 39.93 40.74 127.74
222.82 222.82 229.48 230.82 58.96, 230.66 40.82 222.82

8 127.74 127.74 134.85 135.74 39.951 39.93 40.74 1 127.74
222.82 222.82 229.93 230.82 58.961 230.66 40.82 222.82

Number of Attributes - 5
Number of Descriptors Per Attribute = 800

Strategy 1Back- A C D E F G H
- Gs

ends

2 127.74 127.75 133.07 135.74 87.84 81.32 88.24 127.74
246.57 246.57 251.90 254.57 159.14i 254.49 88.32 246.57

5 127.74 127.74 134.40 135.74 39.95 39.93 40.74 I 127.74
246.57 246.57 253.23 254.57 63.71, 254.41 40.82 246.57

8 127.74 127.74 134.85 135.74 39.951 39.93 I 40.74 127.74
1 246.57 246.57 253.68 254.57 63.71 254.41 40.82 246.57

Number of Attributes 5
Number of Descriptors Per Attribute = 900

Strategy! 1
Back- A B C D E F G H

end s
2 151.49 151.49 156.82 159.49 102.09 102.07 88.24 151.49

270.32 270.32 275.65 278.32 r 173.39 278.24 88.32 270.32
5 151.49 151.49 158.15 159.49 44.70 44.68 64.49 151.49

270.32 270.32 276.98 278.32 68.46 278.16 64.57 270.32
8 151.49 151.49 158.60 159.49 44.70 44 68 40.74 151.49

270.32 270.32 277.43 278.32 68.46 278.16 L 40.82 270.32

Note: There are two rows for each value of the number of back-ends. The first

row gives the average case times and the second row gives the worst case
times.

Figure 18. Descriptor-Processing-and-Message-Exchange Times
(in msecs) for Various Directory Management Strategies
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Number of Attributes - 10

Number of Descriptors Per Attribute *700

Strategy I
Bc-A B C D E F C H

ends

2 127.82 127.82 133.15 135.82 87.89 87.84 88.32 127.82
223.02 223.02 228.35 231.02 145.01 230.82 88.52 1223.02

5 127.82 127.82 134.48 135.82 39.96 39.93 40.82 127.82
223.02 223.02 229.68 231.02 59.00 230.70 41.02 223.02

8 127.82 127.82 134.93 135.82 39.96 I39.93 40.82 127.82
1______ 223.02 1223.021 230.131 231.02 59.001 230.70 41.02 223.02j

Number of Attributes =10

lumber of Descriptors Per Attribute - 800

Strategy BDE

Back-FH
ends .___- __ __ _ _

2 127.82 127.82 133.151 135.82 87.89 87.84 88.32 127.82
246.77 246.77 252.10' 254.77 159.26 2154.57 88.52 I246.77

5 127.82 127.82 134.48, 135.82 39.96 39.93 41.82 127.82
246.77 246.77 253.43 254.77 63.75 1254.45 41.02 246.77

8 127.82 127.82 134.93 135.82 39.96 I39.93 I40.82 t12.7.82
1______ 1246.77 246.771 253.88J 254.77 63.75 254.45 41:02 246.77

Number of Attributes =10

Number of Descriptors Per Attribute =900 ____

Strategy

Back- A 3 C D E F G H
ends ___________________ _ _ _

2 151.57 151.57 1156.90 159.57 102.14 102.09 88.32 T151.57
270.52 1270.52 275.85 278.52 173.51 278.32 88.52 270.52

5 151.57 151.57 .158.23 159.57 44.71 44.68 64.57 151.57
270.52 270.52 277.18 278.52 68.50 278.20 64.77 270.52

8 151.57 151.57 158.68 159.57 44.71 44.68 40.82 151.57
270.521270.52 277.63 278.52 168.50 1278.20 41.02 J270.52

Number of Attributes -15
Number of Descriptors Per Attribute -700

Strategy

Back- A B C D E F G H

2127.94 127.94 133.27 135.94 87.96 87.87 88.44 127.94
223.22 223.22 228.55 231.22 145.13 230.94 88.72 223.22

5 127.94 127.94 134.60 125.94 39.99 39.94 40.94 127.94
223.22 223.22 229.88 231.22 59.04 230.74 41.22 f223.22

8 127.94 127.94 135.05 135.94 39.99 39.93 40.94 127.94
223.22 1223.22 1230.33 1231.22 159.04 230.70 141.22 223.22

Figure 18. (Contd.)
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Number of Attributes - 15
Number of Descriptors Per Attribute = 800

Strategy A I H

Back- I A
ends _ _

2 127.94 127.94 133.27 135.94 87.96 87.87 88.44 127.94
267.97 246.97 252.30 254.97 159.38 254.69 I 88.72 24f.97

5 127.941 127.94 134.60 135.94 39.99 39.94 I 40.94 127.941246.971 246.97 253.63 254.97 63.97 254.49 41.22 24t).97

Number of Attributes 15
Number of Descriptors Per Attribute 900

Strategy A C E FI A , i c ' D I Er r .
Back-

ends I I

2 151.69 151.69 157.02 159.69 1102.21 102.21 88.44 151.69
270.72 270.72 276.05 278.72 '173.63 I 278.44 88.72, 270.72

5 151.69 151.69 158.35 159.69 44.74 44.69 64.69 151.69
270.72 270.72 277.38 278.72 68.54 278.24 63.97i 270.72
151.69 151.69J 158.80 159.69 44.74 44.68 40.94 151.69

1270.72 270.72 277.83 278.72 J b8.54 278.20 41.22 270.72

Figure 18. (Contd.)



the superior strategy for implementation in MDBS is Strategy E.

D. Limitations of Time Analysis and Performance Equations in the
Evaluation of Directory Management Strategies

H our previous evaluation of various strategies on the basis of performance

equation has a number of limitations. First, the effects of the directory

management strategy on other aspects of M4DBS are not considered. It is pos-

sible that some of the strategies may create bottlenecks at some component

of MDBS, thus resulting in very poor overall response times. Second, the ef-

fects of queueing delays of requests are neglected. Third, the requirement

that Strategies E and F lead to improved performance with an increase in the

number of back-ends only when the number of back-ends is no greater than the

number of predicates in a query conjunction seems unreasonable. We expect that

there will be performance improvement even when the number of back-ends far

exceeds the number of predicates in a query conjunction. For example, for

Strategy E, F o,: G, if the number of predicates per query conjunction is five,

and there are tan back-ends, two query conjunctions can be handled by MDBS with

each back-end processing a predicate. An IMBS with only five bacLh-ends would

not be abla to handle all the predicates concurrently. Thus, MDBS with five

back-ends should perform worse than MDBS with ten back-ends, although the re-

sults of our previous study would not indicate this observation. Fourth, the

interpretation af the worst-case performance of Strategy F may be misleading.

In reality, the performance tends to average out and is close to the perfor-

mance of the average case. However, looking at the results of Figures 16, 17

and 18, one may be tempted to remove Strategy F from consideration for l{DBS

implementation. Finally, the strong point of Strategies C and D has not been

brought out by the study. Their advantage comes from the fact that multiple

queries may be simultaneously executed in the different back-ends. That is,

they benefit from inter-query parallelism (where several query conjunctions

may be processed in parallel by the back-ends) rather than intra-guery paal

lelism (where only predicates of a query conjunction may be processed in paral-

lel by the back-ends).

E. Performance Analysis Based on a Closud Oueuelng Network Model

We intend to compare the various directory management strategies by using

a closed queueing network model. Such a model overcomes all the limitations

of the previous study. First of all, we are going to model all system activities
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in MDBS including parsing of requests, descriptor processing, address genera-

tion, retrieval of records from the secondary storage, messages passing, and

record processing in the back-ends. Even the bus in MDBS will be modelled.

Furthermore, such a model takes into account the queueing delays at each point

in the system and also accounts for both inter-query and intra-query parallel-

isms. The model is shown in Figure 19. It consists of two subsystems: the

MBS subsystem (which consists of the controller, the back-ends, the disk

drives and the bus) and the terminal subsystem. Each terminal is manned by a

user who alternates between thinking and waiting. In the thinking state, the

user is contemplating what request to submit next. On submitting a new request

to MDBS, the user enters the waiting state, where he will remain until MDBS

completes the request execution. The mean time that a user spends in a think'ng

state is called the think time and is denoted Z. The mean time that

a user spends in a waiting state is the response time of MrBS and is denoted by

R. Thus, the mean time a user spends at a terminal is (Z+R), since the user

is either thinking or waiting at the terminal. Furthermore, R/(Z+R) represents

the portion cf the time that a user is expected to be in the waiting state.

Since there are M users, the number of users who are expected to be in the wait-

ing state is therefore MR/(Z+R).

We note that the time spent in the waiting state is equivalent to the

response time required of MDBS. The number of users in the waiting state is

therefore eqt.ivalent to the number of responses (i.e., requests to be processed

in NMBS). From now on, we say the number of user requests in MDBS whenever we

mean the number of users who are in the waiting state. Consequently., we

consider the MDBS subsystem alone as a closed queueing network model where the

number of requests in the subsystem is MR/(Z+R).

Let us now describe the closed queueing network model of MDBS that is used

in our study. The various components in a closed queueing network model are

usually referred to as devices. Our model of MDBS has 2(n+l) devices. These

are the controller, the bus, the n disk systems and the n back-ends.

A separate I/O submodel is used for the disk system. This I/O submodel

is an integral part of the overall model and will be discussed in great detail

in the following section. The I/0 submodel will be used to calculate the re-

sponse time of the disk system to an I/O request for a track of data.
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MDBS Subsystem

1 and it
disks

Terminal

SubsstemBack-end

2 and
its disks

lout .--
SControl- Bus

IN -ler

M: Number of
Terminals

Z: Think time
of a user at Bc-n
a terminal Band

R: Response
time of MDBS
for typical
request

Arrows show path taken by a typical request during its execution.

Figure 19. Closed Queueing Network Model of MDBS
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E.1 The I/O Submodel for Single Requests

We consider the disk syst"em as consisting of M disk drives and a single

channel. The 1/0 submodel consists of M drive queues and one channel queue as

shown in Figure 20. It is assumed that requests are independent and arrive ran-

domly in time at the drive queues, each disk drive being likely addressed

equally. The inter-arrival d:.stribution is chosen as exponential with L as

the mean rate at which requests are received by the disk system. The inter-

arrival distribution of requests to each drive queue is also exponential with

a mean request rate of L/M. "The assumption of exponential distribution is

made because it is the most reasonable one in the absence of other informa-

tion about the inter-arrival cistribution.

For a queue, there is a certain rate at which requests will arrive to the

queue and a certain rate at which requests in the queue are serviced. It is

well-known that a queue may be completely analyzed if we know the mean and

variance of the inter-arrival time of requests to the queue and the mean and

variance of the service time of requests in the queue. Let us now analyze the

drive queues and the channel queue, in turn.

Analyzing a Drive Queue - The drive queue service time is the seek time. The

seek time of a disk drive is approximated by an equation of the form (a+ by),

where a and b are constants and y is the number of cylinders traversed dur-

ing the seek. We let N be the total number of cylinders in a disk drive. Then,

Mean service time Mean seek time
N2 2y a bN b

E l (a+by)(---) N 3 3N "

Variance of service time Variance of seek time

b2N 2  b2  a2  b2  2ab + a 2ab
18 18 "2 3N N 3

(See Appendix E for the derivation).

For a drive queue, these are the only two quantities we will need in our deri-

vation.

Analyzing the Channel Queue - For the channel queue, the arrival distribution

is exponential and the service distribution is constant. Then

Mean service time disk rotation time

- d.

Variance of service time = 0.

Mean Inter-arrival time (See Figure 20).

Variance of Inter-arrival time -L-2
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L L L
M M

Queue Queue Queue
for for for

Disk Disk Disk
Drive 1 Drive 2 Drive M

Channel queue

L: mean rate of request
arrivals

Figure 20. Queueing Model of a Single Channel Disk System
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The four quantities needed to analyze the channel queue are, thus, com-

pletely specified. Since the inter-arrival distribution for the channel queue

is exponential and the service distribution for the channel queue is non-

exponential, the channel queue is now analyzed as an M/G/1 queue [Klei7S].

Application of a standard queueing theory equation gives us

Ld
2

Channel wait time 2(1-Ld

Let the time spent by a request in the channel queue and the time spent by a

request in getting service after its removal from the channel queue be refer-

red to as the time spent by a request in the chanaiel. Then

Mean time in channel Ld2  + d2(1-Ld)
L2 d Ld 3

Variance of time in channel = 4(L + 3(-1)

(See Appendix E for the derivation).

This completes our analysis of the channel queue.

Analyzing the Composite Queue - We shall consider a drive queue and channel

queue as a composite queue. This is because after a disk drive completes a

seek, it must acquire the channel for transfering the track of data over the

channel. Only then may a disk drive begin another seek.

Mean service time of Composite Queue

=S

= Mean seek time + Mean time in chz.nnel

a bN b Ld 2

N 3 3N 2(l-Ld)

Variance of service time of Composite Queue

=V

Variance of seek time + Variance of time in channel

b2N2  b- a2  b2  2ab a2  2ab L2d 4 Ld3

18 + 1 - = - W + - + - + 4(l-td) 2 + 3(l-Ld)

Mean Inter-arrival time to composite queue

M

L

Variance of Inter-arrival time to composite queue

M2

Thus, all the four quantities needed to specify the composite queue are known.

Since the inter-arrival distribution of the queue is exponential and the ser-
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vice distribution is non-exponential, the composite queue is an M/G/l queue.

Then, using a standard queueing theory equation, the total time spent by a re-

quest in the composite queue which is the total time spent by a request in the

disk system and, hence,the response time for a request is r and

+V)

Ls
2 (I- -)

M

A Note on this model vs. other models - The I/O submodel that we have developed

thus far is simpler than other models of disk systems in that we are able to

obtain a simple closed-form solution for the response time without relying

on iteration and transformation. The results of [Bard8l] require the solu-

tion of a set of simultaneous equations by the Newton-Raphson method. The

method of [Gotl73] for multiple disk drives also requires an iteration of equa-

tions to be performed. The use of a machine-repair queueing model [Saat6l]

for the analysis of the channel queue also yields no closed form solution for

the response time. Finally, the results of [Fran74] require Laplace tuansfor-

mations.

E.2 The I/O Submodel for Bulk Requests with Fixed Bulk Size

We now proceed to make a very important extension to the I/O submodel.

In a database management system environment such as MDBS where requests are

issued in a high-level query language, each request may involve several tracks.

Thus, each request to the disk system requires actually the retrieval of sev-

eral tracks. In the sequel, we assume that requests to the disk system arrive

with an exponential inter-arrival distribution at a mean rate L. However, each

request is assumed to require the retrieval of T tracks of data which are ran-

domly distributed on the disk tracks. This is a bulk arrival system in the

queueing theory terminology. We term T the size of a bulk request. Sometimes,

we may also talk of the T subrequests of a bulk request.

The queueing model we use is shown in Figure 21. As in the previous sec-

tion for single requests, we will consider a drive queue and the channel queue

as a composite queue. The composite queue is a queue with bulk arrivals. In

order to analyze a queue with bulk arrivals, we need to know the mean and var-

iance of the service time, the mean and variance of the inter-arrival time,

and the first and second moments of the size of a bulk request.

The mean and variance of the service time of the composite queue, s and v,



- 119 -

L LL
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Drive Drive Drive
queue queue queue

1 2 M

Channel queue

Mean =- T
M

2nd Moment T 1(I -i.TL )
M

of bulk size

Figure 21. Queueing Model of a Disk System with Bulk
Arrivals at Size T at a Rate L
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are calculated in the previous section. The only difference is that L in the

expressions for s and v must now be replaced by TL. •

The mean and variance of the inter-arrival time the composite queue are
1 1
T a -, respectively.

The first moment of the size of a bulk request is .1. The second moment

of the size of a bulk request at each module is calculated by assuming a

Bernoulli trial as follows. There are T subrequests in a bulk request received

by the disk system. For each of these T subrequests, there is a I/M probabi-

lity that it will be assigned to a particular drive. Then, the probability

that i requests out of T will be assigned to the same module is:

(T) ()i U IT-i

Thus, the second moment of the bulk size of a request at a module is

T

Z i2 )1 T-i
i=l

This is simplified to (T/M)(-1/M + T/M).

All the six quantities needed to analyze the composite queue are now known.

The total response time may now be calculated using the following formula from

[Saat6l].
S. t

r = 2 (1 - + -v) + s

where

q = L*s*r',

r' - T/M,

t - (T/M)(l-I/M + T/M).

Replacing T with 1, we get the same result that we got for the previous analy-

sis when bulk requests were not assumed. Hence, we have reasons to believe

that our analysis is correct.

E.3 The I/O Submodel for Bulk Requests with Variable Bulk Size

We now make one final variation in our assumptions for modelling the I/O

system of MDBS. In the above analysis, we assumed that the size of a bulk

request, as issued to the disks of a back-end, was fixed at T. More generally,

a request to MDBS will require the retrieval of T tracks. However, the number

of T tracks that will be retrieved at any one back-end varies from 1 to T.

Therefore, we need to assume that each disk system (one disk system is asso-
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ciated with each back-end) may receive a variable number of subrequests with

each bulk request. That is, the size of the bulk requested will vary from 1

to T. If there are n back-ends, then the mean size of the bulk requested at

each disk system is T/n and the variance of this bulk size is (T/n)(l-l/n).

This explains the queueing model shown in Figure 22. The mean and variance

of the bulk size of each request as received by each module must now be cal-

culated. This may be calculated as follows.

The probability that there are j subrequests of the bulk request at a

drive is equal to the probability that i out of T requests are first chosen

to be sent to one of the back-ends multiplied by the probability that j out

of these i requests are sent to a particular drive. Then, the mean bulk size

at a drive is:
T 1 1 T i ( ) ( -

(T (1 (T1) j I
10j--0

T
-ft'Mn

Similarly, the second moment of bulk size at a drive is:

i=O In j=O j MT 1

T 1i T2

The final result we are after may now be obtained by starting the equaticn

developed for the bulk request with fixed bulk size. We let r'= T
Mn

T 1 T2  IT
t - (i- ) + M2n and L in the expressions for s and v be replaced by - - This

is the result we shall use for the response time of the disk system. Thus,

2(1-q) r+ s

where

q Lsr'

r 
T

r' ft

t T 11) T2
t R - (-n M2n2"

F. Modelling the Eight Strategies for Evaluation

Having described the i/O submodel thoroughly, we are now ready to describe

the overall closed queueing network model of which the I/O submodel is a part.

We will develop a separate closed queueing network model for each of the eight
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Figure 22. Queueing Model of a Disk System with Bulk
Arrivals of Variable Bulk Size



- 123 -

strategies. For ease in describing these models, we use the following termi-

nology.

tparse time to parse a user request.
tdir time to do descriptor processing in Strategies A, B, C, D and H.
tdire time to do descriptor processing in Strategy E.
tdirf time to do descriptor processing in Strategy F.
tidrg time to do descriptor provessing in Strategy G.
tm time to generate a message.
adgen time for address generation in the controller.
adgenl time for address generation in the back-ends.
T number of tracks to be retrieved for a typical request.
v average number of predicates in a user query.
tbus time to send a user request over the bus.
tbus2 time to send retrieved records over bus.
tout time taken by controller to output retrieved records to user.
tproc time taken by a back-end to check a track of records against

a user query.

We are now ready to describe the eight models for the cight different

strategies.

F.1 The Centralized Model

Consider the sequence of execution of a typical request. The request is

first processed at the controller. The controller must parse the request and

this will take tparse time units. Next, descriptor processing must be per-

formed on the query in the request. We have already shown how the time for

descriptor processing (tdir) may be calculated for the various strategies.

Next, the controller must generate the necessary secondary memory addresses

using the augmented CDT. This will take adgen time units. Finally, the con-

troller must broadcast the addresses to the back-ends which will take tm time

units. Thus, the total time taken to service the request at the controller is

(tm + tdir + adgen + tparse). Since each back-end must receive a copy of the

request, the controller effectively serves n requests, where the service time

of a request is (tm + tdir + tparse + adgen)/n.

The request is now sent over the bus to the back-ends. The bus service

time for request processing is tbus. Since n copies of the same request are

sent to n respective back-ends, the bus effectively serves n requests. Thus, the

service time is really t . The request is now received by the back-ends

which use the respective disk systems to retrieve relevant tracks. If the

average number of tracks to be retrieved for a request is T, the average num-

ber of tracks that has to be retrieved at each back-end is T/n. The service

time of a disk system in responding to these T/n I/0 requests is obtained from
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the I/O submodel described in the previous section.

The retrieved tracks are now being checked against the user's query.

It is assumed that tproc msecs have to be spent by a back-end in processing

a track of records against a user's query. The records satisfying the query

are now sent over the bus to the controller. The service time of the bus in

this case is assumed to be tbus2 (to be tbus2 when there are n requests). Fi-
n

nally, the controller must output the records to the user which takes tout

time units. A good approximation of tout is tm, the time to send a message.

As before, it is convenient to assume that actually n separate results are ient
tout

to the user with an average service time of
n

In some cases, some of the devices (i.e., components of oBS' nave mor

than one queue. For instance, the controller has two queues. -he :irst .cue

contains requests that must be parsed, processed, and so on. -he -econd

contains a group of records waiting to be output to the user. za n Ja2 ir.

handled as separate classes in our model. Thus, there are two cJasse, i" re-

quests at the controller. Let S(a,b) be the service time for t -.e

at device a. Similarly, let V(a,b) be the visit ratio of tie _,Ass r--i s 3t

device a which is defined as the number of service completions of class b re-

quests at device a for each service completion from MDBS. A closed queueing

network is completely specified when V(a,b) and S(a,b) are specified for all

classes and for all devices. Then, tne results of [Rood79] may be used to

calculate the response times, average queue lengths and utilizations on a per

class and per device basis. Let us specify V(a,b) and S(a,b) for our model.

Let the controller be device 1, the bus be device 2, a disk system be device 3

and a back-end be device 4.

There are tw, classes of requests at the controller (device 1). The queue

of requests waiting to be parsed, processed, and so on, is designated as class 1

at device 1. The queue of records waiting to be output by the controller to

the user is designated as class 2 at device 1. The bus (device 2) also has

two classes of requests. The queue of messages from the controller to the

back-ends is designated as class 1 at device 2. The queue of records sent from

the back-ends to the controller to be output to the user is designated as

class 2 at device 2. The disk system (device 3) has only one request class.

This is the queue of I/O requests for retrieval of tracks of records at speci-

fied addresses which is designated as class 1 at device 3. Finally, each back-

end (device 4) has only one request class and this is the queue of records re-
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trieved by the disk system which are waiting to be checked against the user's

query. This queue is designated as class 1 at device 4. In some of the later

models, we will see that a back-end may have two more request classes, making

a total of up to three request classes at a back-end. If a model has two or

more request classes at a back-end, the following notation is employed. The

queue of requests waiting for address generation is designated as class 1 at

device 4. The queue of records retrieved by the disk system which are waiting

to be checked against the user's query is designated as class 2 at device 4.

Finally, the queue of requests waiting for descriptor processing is designated

as class 3 at device 4. This completes our discussion of the notation which

will be followed for this model and for the models for all the other strategies

also. Thie S and V matrices for the centralized model is as below.

S(1,1) = (tdir + tm + tparse + adgen)/n

S(1,2) = tout
n

s(2,1) - bus
n

S(2,2) = tbus2
n

S(3,1) =

S(4,1) = tproc

V(1,I) = n
V(l,2) = n
V(2,1) = n
V(2,2) = n

V(3,1) T T
n

V(4,1) T T
n

"ote that we have put a question mark for S(3,1), the service time of the disk

system. The I/O submodel will be used to calculate S(3,1).

F.2 The Partially Centralized Model

The notation we developed for the previous strategy will now be used to

explain the remaining models. Let us consider the sequence of execution of a

particular request in the partially centralized strategy. First, the controller

parses the request and then performs descriptor processing on the request.

Finally, it broadcasts the corresponding descriptors to all the back-ends. Thus,

the service time for the request at the, controller Is (tdir +- tparse 4- tm). As

before, we assume that there are n requests and that the service time for a re-

quest at the controller is (tdir + tparbe e request now goes over the
tbus n

bus with a service time of - to the back-ends.
n
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The back-ends perform address generation taking adgenl units of time.

We use adgenl rather than adgen as in the previous strategy because the address

generation in this strategy and in all the remaining strategies is different

from the address generation in the centralized strategy.

Next, the request is presented by a back-end to its disk system for access-

ing the relevant tracks. The retrieved data are then processed in the back-ends

taking a service time of tproc units. The results are then sent back over the

bus to the controller. The bus service time is again tbus2 Finally, the re-
n toutsults must be returned to the user and the controller takes - time units for

n
this. The model may be specified by specifying its S and V entries as below.

S(ll) = (tdir + tparse + tm)
n

S(1,2) = tout
n

S (2 ,1 ) = --
n

S(2 2) = tbus2
n

S(3,1) = ?
S(4,1) - adgenl
S(4,2) - tproc

V(l,) =n
V(l,2) =n

V(2,1) =n
V(2,2) = n

V(3,1) = T
n

V(4,1) = 1
T

V(4,2) = -
n

F.3 The Rotating Model

Consider the sequence of execution of a typical request. Two possibili-

ties exist depending on whether the descriptor processing is done at the con-

troller or at one of the back-ends. If the descriptor processing is done at

the controller, then the service time at the controller will be
(tparse + tm + tdir) Otherise the service time will be (tparse + tm)

n n
Since there are two possibilities of request execution in this model as com-

pared to the single request execution possibility in the other models, an

additional request class is introduced at the controller for 'is model and

this is lesignated class 3 at device 1. The request is now broadcast over the
thus

bus with a service time of - . If descriptor processing has not already been
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done at the controller, then it must be done at the back-ends, and this takes

(tdir + tm) units. The additional tm units is needed to communicate the re-

sults to all the back-ends. Next, the back-ends perform address generation

taking adgenl time units. The disk systems are activated at this time to ac-

cess tracks. The retrieved data are then processed by the back-ends with a

service time of tproc. Records satisfying the request are sent over the bus
taking tbus2 time units and finally, the controller spends tout time units

n n
outputting the results to the user. The model may be specified by the fol-

lowing service times and visit ratios.

S(II) - (tdir + tparse + tm)
n

S(i ,2) - tout
n

S(1,3) = (tparse + tm)
n

t bus
n

s(2,2) = bus2
n

S(3,1) =

S(4,1) = Edgenl
S(4,2) = tproc
S(4,3) = (tdir + tm)

V(1l) = --
rL+l

V(l,2) =n

V(1,3) 
= ,2

V(2,) =r
V(2,2) =n

V(3,1) --

n
V(4,1) = 1

V(4,2) = fl

1
V(4,3) =

F.4 The Rotating Without Controller Model

Consider the execution sequence of a typical request. The controller does

parsing on a request before broadcasting it to all the back-ends. The control-

ler service time is n The request is now broadcast over the bustbun
with a service time of -- and arrives at the back-ends. One of the back-ends

n
will do the descriptor processing for this request. The visit ratio of the

descriptor processing queue at each back-end must be adjusted to reflect the
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fact that only one out of every n user generated requests will need descriptor

processing at that back-end. The back-end that does descriptor processing

must then communicate the results to all the back-ends. Hence, the service

time of this queue in the back-end is (tdir + tm). Then, all the back-ends

will perform address generation independently, taking adgenl time units. Next.
T

the disk system at a back-end will retrieve - tracks of data. These tracks of

data are checked by the back-ends against the user's query taking tproc units of
tbus2

time per track. The results are shipped over the bus taking fur- time units.
__ n

Finally, the controller outputs the results to the user taking tout time units.n

The model is entirely specified by specifying the service times and visit ratios

as below.

S(l,l) = (tparse + tm)
n

S(l,2) =tout
n

S(2,1) =tbuss(2,2) = tbusn
S(2,2) = tbus

n

S(3,1) = ?
S(4,1) = adgenl
S(4,2) = tproc
S(4,3) = tdir + tm

V(,1) =n
V(1,2) =n
V(2,1) =n
V(2,2) n

V(3,1) = Tn
V(4,1) = 1

= T
V(4,2) - Tn

V(4,3) - 1
n

F.5 The Fully Duplicated Model

This model differs from the previous one only in the way descriptor pro-

cessing is done. Instead of each back-end doing the descriptor processing for

one out of every n requests, each back-end will do a portion of the descriptor

processing for every request. The back-ends must then exchange thelr results.

The service times and visit ratios are shown below for this model:

S(l,1) =(tparse + tm)
n

S(1,2) - tout
n
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S(2,1) =bus
n

tbus 2
S(2,2) -

n

S(3.1) -?
S(4,1) - adgenl
S(4,2) - tproc
S(4,3) . y*tdire + tm

n

V(,1) =n
V(1,2) =n
V(2,1) =n

V(2,2) =n

V(3,1) = T
n

V(4,1) I 1

T
V(4,2) = n
V(4,3) - 1

F.6 The Descriptors Dividing by Attribute Model

The only difference between this and the previous model is that tdire is re-

placed by tdirf in the expression for 5(4,3). The value tdirf has been cal-

culated in a previous section and is the time for doing descriptor processing

on a single predicate by using Strategy F. Each back-end is expected to
V

handle - out of the y predicates in a user query.
n

F.7 The Descriptors Division Within AttributE Model

Once again, this model is very similar tc that for Strategy E and may be

obtained from there by setting S(4,3) equal tc (y*tdirg + tm). Once again,

tdirg is the time for descriptor processing or. a single predicate using Stra-

tegy G and has been calculated in an earlier section. Note that, unlike the

previous strategies, all y of the predicates in a query are handled at each

back-end.

F.8 The Fully Replicated Model

Consider the sequence of execution of a typical request. The controller

first parses the request and broadcasts it to all the back-ends. Thus, the

controller service time is (tparse .t) The requests go over the bus with
tbus n

an average service time of n . The requests are now received at each back-

end. Each back-end will first perform descriptor processing and then address

generation on a request. Next, T track retrieve requests are submitted to the
n
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disk system. The retrieved records are searched against the user's query in

the controller and this takes tproc time units for each track of records. The

qualified records are now returned via the bus taking a service time of
tbus2- and are then output to the user by the controller taking a service timen tout
of u. The complete specification of the service times and visit ratio isn

shown below:

S(1,1) (tparse + ti_)
n

tout
S(1,2) = n

S(2,1) = tbus
n

S(2,2) = bs

S(3,1) - ?
S(4,1) = tdir + adgenl
S(4,2) = tproc

V(1,1) =n
V(1,2) = n
V(2,1) = n
V(2,2) = n

V(3,1) = Tn
V(4,1) = 1

V(4,2) = T
n

This completes our specification of the various models to be employed.

The only question to be answered concerns the incorporation of the I/0 sub-

model into the overall models. We shall explain the procedure employed in

order to incorporate the I/0 submodel into the overall models in the next

section.

G. Results of the Queueing Network Modeling of Strategies

In order to solve any of the eight closed queueing network models of MDBS,

the service times and visit ratios of all the devices in the network must be

specified. We have specified the visit ratios of all the devices including the

disk systevs. However, the service times of the disk systems have not yet

been specified. In this section, we will describe how the service time of a

disk system may he calculated.

In Section E.1, we have an expression for the mean service time of the com-

posite queue, in a disk system, in terms of L, the arrival rate of requests

to the disk system. However, we did not know then the value of L. Therefore,

a technique for calculating L and, hence, s, is developed herein. We use the
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following iterative procedure. The following values are used for the various

parameters in our calculations.

tparse : 20 msecs
tdir calculated using equation (2) of Section A
tdire calculated using equation (3) of Section A
tdirf calculated using equation (4) of Section A
tdirg calculated using equation (5) of Section A

tm : 8 msecs
T :18
tbus : .01 msecs
tbus2 16 msecs

tout 8 msecs

tproc : 10 msecs
adgenl : calculated using equation (1) of Appendix F
adgen : calculated using equation (2) of Appendix F

The number of back-ends is taken from the set {3, 6, 9} and the number

of requests in the system is taken from the set (5, 10, 1.5}.

Assume an initial value for L, the arrival rate of requests to the disk

system as follows:

(seek time + rotation time)

Using this value of L, calculate the value of s, the disk system service time

and r, the disk system response time using the expressions derived in Sections

E.1 and E.3, respectively. With s, the closed queueing network Tiodel is com-

pletely specified. It may then be used to calculate utilizations, response

times, throughputs and average queue lengths on a per class and per device

manner. In particular, the response time of the disk system modelled by the

closed queueing network can be calculated. The value of the disk system re-

sponse time obtained from the closed queueing network model, R is compared to

that obtained from the I/O submodel, r. If the two are less than one milli-

second apart, the iteration stops. Otherwise, the value of L is modified to

be equal to the throughput Tp of the disk system calculated from the closed

queueing network model. The iteration procedure is now repeated until the

small difference between R and r is obtained. In our experiments with this

iteration technique, we found that no more than three iterations were needed.

That is, with the chosen initial value of L, the convergence was extremely

fast. With the closed queueing network models for the various directory

processing strategies being completely specified, we now present the results

of our experiments. The results for strategies A to D are presented in

Figures 23, 24, 25 and 26, respectively. Since the results for Strategies

E and F are identical, they are presented in Figure 27. Finally, the re-

sults for Strategies G and H are presented in Figures 28 and 29, respec-
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Number of Requests = 5 Number of Requests 5 Number of Requests = 5
Number of Back-ends 3 Number of Back-ends 6 Number of Back-ends 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.3178 36.499 .5966 26.191 .7815 22.251

.0336 2.759 .0630 1.419 .0826 0.964

.0 0.003 .000. 0.002 .0001 .0001

.0672 5.714 .1261 3.032 .1652 2.102

.9966 172.960 .9506 144.067 .8453 119.090

.0252 1.026 .0236 1.023 .0206 1.020

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends - 3 Number of Back-ends = 6 Number of Back-ends = 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.3189 37.047 .6248 32.458 .8647 39.183

.0337 2.760 .0660 1.427 .0914 0.977
0.000 0.003 .0001 .002 .0001 .001
.0674 5.719 .1320 3.071 .1827 2.169

1.000 369.856 .9955 323.830 .9353 238.085
.0253 1.026 .0248 1.025 .0228 1.023

Number of Requests = 15 Number of Requests = 15 Number of Requests - 15
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends - 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.3189 37.051 .6274 33.675 .8924 53.761

.0337 2.760 .0663 1.428 .0943 0.981

.0000 .003 .0001 .002 .0001 0.001

.0674 5.719 .1326 3.074 .1886 2.188
1.000 567.697 .9996 520.885 .9692 370.881
.0253 1.026 .0249 1.025 .0236 1.024

Figure 23. Queueing Network Model Results for Strategy A
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Number of Requests = 5 Number of Requests - 5 Number of Requests = 5
Number of Rack-ends - 3 Number of Back-ends - 6 Number of Zack-ends 9

1
Response Response Response

Utilization Time Utilization Time Utilization Time
(msecs) (msecs) (msecs)

.1592 14.973 .3019 8.693 .4192 6.526

.0336 2.759 .0638 1.419 .0885 0.967

.0000 .003 .0001 .002 .0001 .001

.0672 5.714 .1275 3.028 .1771 2.112

.9978 168.301 .9613 134.016 .9063 117.194

.1133 30.361 .1469 21.350 .1230 12.507

.0252 1.026 .0239 1.023 .0221 1.021

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1595 15.023 .3139 9.193 .4612 7.714

.0337 2.760 .0663 1.428 .0974 0.984

.0000 0.003 .0001 0.002 .0001 .001

.0674 5.719 .1326 3.074 .1948 2.205
1.0000 365.655 .9997 325.161 .9970 294.535
.1136 30.417 .1527 21.745 .1354 12.849
.0253 1.026 .0249 1.025 .0244 1.025

Number of Requests 15 Number of Requests = 15 Number of Requests - 15
Number of Back-ends 3 Number of Back-ends = 6 Number of Rack-ends = 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1595 15.023 .3140 9.203 .4625 7.826

.0337 2.760 .0663 1.428 .0977 0.985

.0000 0.003 .0001 0.002 .0001 0.001

.0674 5.719 .1326 3.074 .1954 2.209
1.000 563.502 1.0000 526.068 .9999 497.486
.1136 30.417 .1528 21.749 .1358 12.864
.0253 1.026 .0249 1.026 .0244 1.025

Figure 24. Queueing Network Model Results for Strategy B
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Number of Requests = 5 Number of Requests = 5 Number of Requests = 5
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends - 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.0398 13.145 .0433 6.582 .0423 4.378

.0336 2.759 .0640 1.419 .0894 0.967

.0883 10.226 .1919 5.674 .2816 4.124

.0000 0.003 .0001 0.002 .0001 0.001

.0673 5.714 .1279 3.029 .1788 2.115

.9981 167.974 .9645 133.882 .9152 117.438

.1134 30.363 .1473 21.358 .1243 12.517

.0252 1.026 .0240 1.023 .0224 1.021

.u188 18.218 .0204 18.231 .0200 18.211

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends = 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.0399 13.511 .0449 6.609 .0462 4.412

.0337 2.760 .0663 1.428 .0976 0.985

.0885 10.239 .1989 5.824 .3074 4.481

.0000 .003 .0001 0.002 .0001 0.001

.0674 5.719 .1326 3.074 .1952 2.207
1.0000 365.406 .9999 326.398 .9988 300.118
.1136 30.417 .1527 21.747 .1356 12.856
.0253 1.026 .0249 1.025 .0244 1.025
.0188 18.222 .0212 18.265 .0218 18.276

Number of Reauests = 15 Number of Requests = 15 Number of Requests = 15
Number of Back-ends = 3 Number of Back-ends 6 Number of Back-ends = 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.0399 13.151 .0449 6.610 .0463 4.413

.0337 2.760 .0663 1.428 .0977 0.985

.0885 10.239 .1990 5.826 .3077 4.494

.0000 .003 .0001 .002 .0001 .001

.0674 5.719 .1326 3.074 .1954 2.209
1.0000 563.253 1.0000 527.379 1.0000 564.254
.1136 30.417 .1528 21.749 .1358 12.864
.0253 1.026 .0249 1.026 .0244 1.025
.0188 18.222 .0212 18.265 .0218 18.278

Figure 25. Queueing Network Model Results for Strategy C
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Number of Requests = 5 Number of Requests 5 Number of Requests 5
Number of Back-ends - 3 Number of Back-ends = 6 Number of Back-ends - 9

Ocponsc Responsc 'esponse

Utilization "Time Utilization Time Utilization Time
(msecs) (msecs) (msecs)

.1177 10.560 .2235 5.872 .3118 4.262

.0336 2.759 .0638 1.419 .0891 0.967

.0000 .003 .0001 0.002 .0001 0.001

.072 5.714 .1277 3.027 .1782 2.113

.94)79 167.438 .9627 133.263 .9119 116.841

.1l33 30.360 .1471 21.348 .1238 12.511

.0252 1.026 .0239 1.023 .0223 1.021

.0!50 18.334 .0238 18.290 .0221 18.247

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends = 9

T Response Response Response

Utili~ation Time Utilization Time Utilization Time
(msecs) (msecs) (msecs)

.1L79 10.581 .2321 6.075 .3414 4.707

.0337 2.760 .0663 1.428 .0976 0.985
0.0)00 0.003 .0001 0.002 .0001 0.001
0.0574 5.719 .1326 3.074 .1951 2.207
1.0)00 364.,20 .9998 325.242 .9986 298.250
.1136 30.417 .1527 21.746 .1356 12.855
.0253 1.026 .0249 1.025 .0244 1.025
.0251 18.339 .0247 18.331 .0242 18.321

Number of Requests = 15 Number of Requests = 15 Number of Requests 15
Number of Back-ends = 3 Numbcr of Back-cnds - 6 Number of Back-ends = 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1179 10.581 .2321 6.077 .3479 4.727

.0337 2.760 .0663 1.428 .0977 0.985

.0000 0.003 .0001 .002 .0001 0.001

.0674 5.719 .1326 3.074 .1954 2.209
1.0000 562.667 1.0000 526.208 1.0000 502.233
.1136 30.417 .1528 21.749 .1358 12.864
.0253 1.026 .0249 1.026 .0244 1.025
.0251 18.339 .0247 18.331 .0243 18.323

Figure 26. Queueing Network Model Results for Strategy D
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Number of Requests 5 Number of Requests = 5 Number of Requests = 5
Number of Back-ends = 3 Number of Back-ends 6 Number of Back-ends = 9

Response Response Response

Utilization Time Utilization Time Utilization Time
(msecs) (msecs) (msecs)

.1176 10.555 .2125 5.747 .2724 4.017

.0336 2.758 .0607 1.411 .0778 0.953

.0000 0.003 .0001 0.002 .0001 0.001

.0672 5.712 .1214 2.994 .1556 2.049

.9972 164.720 .9153 115.205 .7966 93.721

.1132 30.347 .1398 21.069 .1081 12.254

.0252 1.026 .0228 1.021 .0195 1.017

.0474 11.842 .1212 17.933 .1296 14.975

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends 3 Number of Back-ends = 6 Number of Back-ends 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1179 10.581 .2314 6.057 .3325 4.575

.0337 2.760 .0661 1.427 .0950 0.980

.0000 0.003 .0001 .002 .0001 .001

.0674 5.719 .1322 3.070 .1900 2.180

1.0000 354.556 .9967 273.279 .9725 213.057
.1136 30.417 .1523 21.712 .1320 12.760
.0253 1.026 .0248 1.025 .0238 1.024
.1009 26.642 .1974 29.718 .2209 23.666

Number of Requests = 15 Number of Requests = 15 Number of Requests - 15
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends - 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1179 10.581 .2321 6.076 .3407 4.702

.0337 2.760 .0663 1.428 .0973 0.984
0.0000 0.003 .0001 .002 .0001 0.001
.0674 5.719 .1326 3.074 .1947 2.205

1.0000 541.824 .9998 446.030 .9963 362.853
.1136 30.417 .1527 21.748 .1353 12.849
.0253 1.026 .0249 1.025 .0243 1.025
.1676 47.798 .2637 43.193 .2905 33.565

Figure 27. Queueing Network Model Results for Strategies E and F
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Number of Requests = 5 Number of Requests - 5 Number of Requests - 5
Number of Back-ends = 3 Number of Back-ends 6 Number of Back-ends 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecsl

.1175 10.548 .2103 5.727 .2545 3 93j

.0336 2.758 .0601 1.410 .0727 0.948

.0000 0.003 .0001 0.002 .0001 0.001

.0671 5.711 .1202 2.988 .1454 2.025

.9960 161.248 .9061 112.809 .7442 86.998

.1131 30.238 .1384 21.024 .1010 12.160

.0252 1.025 .0225 1.021 .0182 1.016

.0750 19.302 .1343 20.315 .1625 20.696

Number of Requests = 10 Number of Requests = 10 Number of Requests = 10
Number of Back-ends = 3 Number of Back-ends 6 Number of Back-ends 9

Response Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1179 10.581 .2318 6.066 .3335 4.585

.0337 2.760 .0662 1.428 .0953 0.980

.0000 0.003 .0001 .002 .0001 9.001

.0674 5.719 .1325 3.072 .1906 2.183
1.0000 358.209 .9986 289.951 .9753 216.819
.1136 30.417 .1526 21.730 .1324 12.768
.0253 1.026 .0248 1.025 .0238 1.024
.0753 19.334 .1480 20.972 .2129 22.545

Number of Requests = 15 Number of Requests 15 Number of Requests = 15
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends - 9

Response Response Response
UtilizationI Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1179 10.581 .2321 6.077 .3417 4.720

.0337 2.760 .0663 1.428 .0976 0.985
0.0000 .003 .0001 0.002 .0001 0.001
.0674 5.719 .1326 3.074 .1952 2.208

1.0000 556.056 1.0000 490.343 .9992 409.053
.1136 30.417 .1528 21.749 .1357 12.860
.0253 1.026 .0249 1.026 .0244 1.025
•0753 19.334 .1482 20.989 .2182 22.857

Figure 28. Oueueing Network Model Results for Strategy G
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Number of Requests - 5 Number of Requests - 5 Number of Requests = 5

Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends - 9

aesponse Response Response
Utilization Time Utilization Time Utilization Time

(msecs) (msecs) (msecs)

.1175 10.552 .2148 5.781 .2769 4.053

.0336 2.758 .0614 1.413 .0791 0.955
0.0000 0.003 .0001 0.002 .0001 0.001

.0671 5.712 .1228 3.003 .1582 2.058

.9963 164.279 .9256 120.384 .8097 97.088

.1546 43.423 .2172 35.150 .2076 25.509

.0252 1.026 .0230 1.022 .0198 1.018

Number of Requests = 10 Number of Requests = 10 Number of Requests - 10
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends = 9

Response Response Response
T!tilization Time "tilization Ti-e Ut-.1zat'on Time

(msecs) (msecs) (msecs)

.1179 10.581 .2318 6.068 .3374 4.639

.0337 2.760 .0662 1.428 .0964 0.982
0.0000 0.003 .0001 0.002 .0001 0.001

.0674 5.719 .1325 3.073 .1928 2.194
1.0000 361.281 .9988 301.412 .9868 244.849

.1552 43.608 .2344 36.928 .2530 27.925

.0253 1.026 .0248 1.025 .0241 1.024

Number of Requests = 15 Number of Requests = 15 Number of Requests 15
Number of Back-ends = 3 Number of Back-ends = 6 Number of Back-ends = 9

Response Response Response

Utilization Time Utilization Time Utilization Time
(msccs) (msecs) (msecs)

.1179 10.581 .2321 6.077 .3418 4.724

.0337 2.760 .0663 1.428 .0977 0.985

0.0000 0.003 .0001 0.002 .0001 0.001

.0674 5.719 .1326 3.074 .1953 2.209

1.0000 559.128 1.0000 501.585 .9997 442.489

.1552 43.608 .2347 36.983 .2563 28.224

.0253 1.026 .0269 1.026 .0244 1.025

Figure 29. Oueueing Network Model Results for Strategy H

_ _ _ _ __ _ _ __ _ _ __ _ _
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tively. Each of these figures contains two columns, one for the utilization

and one for the response time. These two measures are recorded on a per-class-

and-per-device basis. The order of presertation of the results within a figure

for a particular strategy is the same as the order of presentation of the ser-

vice time and visit ratio in the description of the model for that Strategy.

For instance, in the description ot the mcdel for Strategy A, we first pre-

sented the service time and visit ratio fcr class I at device 1. Thus, in

Figure 23, the first row gives the utilization and response time for class 1

at device 1. In reading these figures, WE should keep in mind that device I

is the controller, device 2 is the bus, device 3 is a disk system and Jevice

4 is a back-end.

We also present a comparative set of results for the eight different stra-

tegies in Figure 30. Each entry in this figure represents the overall response

time of MDBS using one of these eight strategies. Most of the discussion that

follows is based on the results shoun in this figure. However, in order to

explain some of the results shown in this figure, we will have to refer back

to the results presented in Figures 23 through 29.

As expected, the centralized strategy (i.e., Strategy A) is the worst of

the lot. It is consistently the worst str.ategy over the entire range of val-

ues for the number of requests and the ntuber of back-enas. There are situa-

tions when the rpsponse time obtained by use of the centralized strategy is

almost 50% higher than when using some of the other strategies. For example,

when the number of back-ends is taken as nine and the number of requests is

fifteen, the response time of the centralized strategy is 1255.16 msecs. On

the other hand, the response time using S:rategy E, the fully duplicated stra-

tegy, is only 810 msecs. The reason for the poor performance of the central-

ized strategy is, as we have expected, owing to the fact that the controller

is becoming a bottleneck. For the particular numbers of requests and numbers

of back-ends under consideration, the use of Strategy E will result in a mere

35% utilization of the controller. This figure is obtained by adding the first

two entries in the utilization column of Figure 27. On the other hand, the

use of the centralized strategy lead to a controller utilization as high as 90%

which is obtained by adding the first two entries in the utilization column of

Figure 23.

The partially centralized strategy (i.e., Strategy B) was consistently

better than the centralized strategy. The response time improvement of the
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RESPONSE TIME TABLES

(in msecs)

Number of requests = 5
Strate-i T
gies I

k A B C D E F C Hof
back-ends !

3 1173.7067 1111.5368 1106.0955 1093.1209 1076.7827 1076.7826 1055.9013 1087.1987

6 617.087 503.2648 490.2142 484.078 428.6259 428.6259 421.2351 458.5127

9 467.0594 334.3705 315.55911 313.2972 263.8941 263.89411 249.3356 284.3019

Number of requests - 10
Strate-1gijes

of A B C D E F G H

back-endsl

3 2356.7506 2295.8904 2288.7749 2277.5511 2215.9679 2215.9679 2237.8885 2269.5116

6 1194.2616 1080.4319 1068.6451 1061.9707 905.9084 905.9084 956.0146 1005.6126

9 858.1617 701.0841 682.5620 681.4713 509.5228 509.5228 517.1716 588.9918

Number of requests - 15

Strate- A
giesF G H

I of
back-ends

3 3543.8065 3462.9716 3475.8566 3464.6326 3339.5784 3339.5784 3424.9681 3456.5894

6 1792.7510 1683.2213 1671.5949 1664.8886 1424.3426 1424.3426 1557.2938 1607.0621

9 1255.1678 1108.0571 1090.8745 1089.6635 810.6118 810.6118 903.2192 985.4986

Figure 30. MDBS Response Times Under Various
Directory Management Strategies
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partially centralized strategy over the centralized strategy is most evident

when the number of back-ends is very large. For example, when the number of

back-ends is nine and the number of requests is five, che ceatralized strategy

has a response time of 467.06 msecs and the partially centralized strategy has

a response time of 334.37 msecs which is an improvement of aiout 40%. The

reason that the improvement is more visible at larger number of back-ends is

because this is precisely when the controller in the centralized strategy be-

comes highly utilized. In other words, the partially centralized strategy is

a more extensible strategy than the centralized strategy. Comparing corre-

sponding entries in Figures 23 and 24, we see that the controller utilization

under the partially centralized strategy is 1/2 the controller utilization

under the centralized strategv.

Next, let us consider the results of using che rctating strategy, (i.e.,

Strategy C). As we recall, the rotating strategy is an improvement over the

partially centralized strategy because the descriptor processing is shared

by the back-ends and the controller, instead of being done entirely in the

controller. The results bear out the fact that the rotating strategy is in-

deed superior to the partially centralized strategy, since it consistently out-

performs the partially centralized strategy, in terms of response time, over

the entire range of values for the number of back-ends and the number of re-

quests. The improvements are not dramatic. The improvement in average re-

sponse time is in the order of ten or twenty milliseconds. The largest improve-

ment occurs when the number of back-ends is the largest. This implies, of

course, that the rotating strategy is more extensible than the partially cen-

tralized strategy and, hence, more preferable to us as designers of an exten-

sible system.

Next, let us consider the results of using the rotating without controller

strategy (Strategy D). The rationale of using this strategy was that it might

provide some improvement over the rotating strategy because of the fact that

it serves to alleviate the controller limitation problem to a greater degree.

This is because the controller is no longer involved in descriptor processing.

The results of Figure 30 bear this out to some degree. In fact, the rotating

without controller strategy provides a better response time than the rotating

strategy over the entire range of values for the number of requests and the

number of back-ends. However, the improvement of this strategy over the ro-

tating strategy is only marginal. Thus, it is seen that the improvement pro-
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vided by this strategy over the rotating one is never more than about ten

milliseconds. Furthermore, the percentage improvement in response time re-

mains fairly constant over the entire range of values of the two parameters

being varied. Thus, the percentage improvement is (1104.09 - 1093.12)/1104.09,

when the number of back-ends is three and the number of requests is five. For

the same number of requests and six back-ends, the percentage improvement is

(490.2142 - 484.0788)/490.2142. Both these represent an improvement of about

11%. A look at the controller utilizations in Figures 25 and 26 tells us that

the controller is indeed a little less utilized in the rotating without con-

troller strategy. For instance, the controller utilization when the number of

back-ends is three and the number of requests is five for the rotating stra-

tegy is 16.17%. on the other hand, the controller utilization in the rotating

without controller strategy for the same values of number of back-ends and

number of requests is 15.13%.

Let us now consider the results of the fully duplicated strategy (Stra-

tegy E). As we recall, this strategy, along with the next two strategies, are

the three strategies that employ parallel descriptor processing during the des-

criptors search phase. Our results indicate that such a strategy is likely to

be better than all the strategies considered thus far. Comparing it with the

best strategy considered so far (the rotating without controller strategy),

we see that the fully duplicated strategy can lead to as much as 34% lower

response time. This happens when the number of back-ends is nine and the num-

ber of requests is 15. For these particular number of back-ends and number of

requests, the response time using the fully duplicated strategy is 810.6118

msecs whereas the response time using the rotating without controller strategy

is 1089.6635 msecs. The results also indicate that the improvement of the

fully duplicated Strategy over the rotating without controller strategy becomes

more evident at larger number of back-ends and larger number of requests. In

other words, the fully duplicated strategy is more extensible than the other

strategies we have considered so far.

The utilization of the disk system plays an important part in the disparity

in the response time between these two strategies. The utilization of the

disks in the rotating without controller strategy (the fifth row of each table

in Figure 26,) is a little higher than in the fully duplicated strategy (See

the fifth row of each table in Figure 27). However, a small increase in the

disk utilization can increase the overall response time by a large amount owing
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to the fact that the disk service time is large. This is one of the causes

of thebetter response time in the fully duplicated strategy. Another reason

for the better response time is the fact that the descriptor search phase now

takes a shorter length of time. For instance, when the number of back-ends

is nine and the number of requests is five, the descriptor search timne 'In the

rotating without controller strategy is 18.247 msecs (see last row of cor-

responding table in Figure 26) while it is only 14.975 msecs (see last row of

corresponding table in Figure 27) in the fully duplicated strategy. This was

the reason why we had expected the fully duplicated strategv to perform better

than the rotating without controller strategy. The fact that the disk system

response time is also improved is unexpected.

The utilization of the controller is also seen to be a little better In

the case of- the fully duplicated strategy. Thus, when the number of back-ends

is nine and the number of requests is five, the total controller utilization

is 40.09% if :he rotating without controller strategy is used, while ir is

only 35.02% if Lhe fully duplicated Strategy is used. This also leads to some

improvement in total response time.

The results for the descriptors division by attribute strategy (Strategy F:

are exactly the same as for the fully duplicated strategy (Strategy E).

Next, let us consider the results for the descriptors division within at-

tribute strategy (Strategy G). We recall that this strategy also emplovs

parallel descriptor processing. For small number of requests, this strategy

performs marginally better than the fully duplicated strategy. For largE num-

ber of requests, however, the fully duplicated strategy outperforms the des-

criptors division within attribute strategy. Furthermore, the fully duplicated

strategy outperforms the descriptors division within attribute strateg'y the

most, when the number of back-ends is the largest. Thus, when the number of

back-ends is nine and the number of requests is fifteen, the response time

under the fully duplicated strategy is 810.62 msecs and the response time under

the descriptors division within attribute strategy is 903.2192 msecs. This is

an improvement of 10.3%.

Finally, let us consider the results of the fully replicated strategy

(Strategy H). The results indicate that it is inferior to the three strategies

which employ parallel descriptor processing and superior the the other four

strategies.

Consider, once agaia, the results of Figure 30 for the fully duplicated
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strategy (Strategy E). When the number of requests is five and the number of

back-ends is three, the response time is 1076.78 msecs. When the number of

back-ends is increased to six and the number of requests is kept unchanged,

the response time improves to 428.63 msecs. That is, when the number of back-

ends increases to twice of its original number, the response time of !YDBS

improves better than one half of its original time. This is a surprising re-

sult. Our data placement strategy only ensures us that the doubling of the

number of back-ends may halve the number of tracks to be retrieved at each

back-end. Thus, we have expected that, in the best case, a doubling of the

number of back-ends would lead to a halving of the response time. Hence, the

results of Figure 30 are better than expected. An examination of the results

in Figure 27 reveals to us the reason for the better than expected improvement

ifl resionse time. Once again, it was the response time of the disk system

that played an important role in this unexpected result. When the number of

back-e-ds is increased as indicated, it turns out that the disk utilization

decreases from 99.72% to 91.53%. As a result, the disk system response time

decreases from 164.72 msecs per request to 115.21 msecs per request. Thus,

not only is the number of tracks to be retrieved decreased, so is the time to

retrieve each track. This explains the greater-than-expected decrease in re-

sponse time. Similar reasons account for the fact that when the number of

tack-erds is tripled to nine while keeping the number of requests constant at

five, the response time is shortened to 263.8941 msecs which is 24.5% of the

original time of 1076.7827 msecs (we have expected that the response time can

be no better than 33% of what it was when the number of back-ends was three).

In other words, by choosing such a strategy for directory management in >IDBS,

we expect that an increase in the number of back-ends in MDBS by a factor of

n will cause an improvement in response time which will be better than a

factor of n.

In conclusion, the results indicate that the fully duplicated strategy

(Strategy E) and the descriptors division by attribute strategy (Strategy F)

are the best strategies over a wide range of values for the number of requests

and the number of back-ends. The choice is now between these two strategies.

The advantage of the latter strategy is that it would occupy less storage

space, since descriptors are not duplicated. However, in the following sec-

tion, we will study the difference between these two strategies in terms of

storage requirements for typical ntumber of directory attributes and number of
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descriptors per attribute. Furthermore, in another section, we will examine

whether the duplication of descriptors, as in the fully duplicated strategy,

is necessary for efficient handling of update requests.

4.2.4 Storage Requirements of Directory Management Strategies

In this section, we shall compare the eight strategies on the basis of

their storage requirements. As we have already indicated, two types of di-

rectory based tables are necessary in MDBS. The first type of table is the

descriptor-to-descriptor-id table (DDIT) and the second type of table is the

augmented cluster definition table (CDT). We shall aiscuss for each strategy

the amount of storage needed for bot, types of tables, in turn.

Primarily, the eight different directory management strategies differ in

the amount of storage needed for storing descriptor-to-descriptor-id tables.

Except for the centralized strategy, there is no difference among the different

strategies in the amount of storage needed for storing the augmented cluster

definition tables. Since the size of the augmented CDTs is much larger than

the size of the descriptor-to-descriptor-id tables, it is expected that there

will be no significant difference among the different strategies in terms of

storage requirements. Let us examine them more carefully.

A. Size Estimation of the Descriptor-to-Descriptor-Id Tables (DDITs)

We assume that a database has i directory attributes and that there are

D descriptors per attribute. Let k be the number of descriptors that can be

stored in a page of b bytes. All strategies, except strategies F and G, re-

quire the following amount of storage for storing the descriptor tables.

S = u(2)bi bytes

where, u(a) stands for the nearest integer equal to or greater than a. In

Strategies A and B, DDITs are stored entirely at the controller. Thus,

the size of the tables is S bytes. In Strategy C, these tables are

duplicated in the controller and at all the back-ends. Thus, a total of

(n+l)S bytes are required by these tables. In Strategies D, E and H, the

tables are duplicated in all the back-ends. Hence, in these strategies, the

total storage required by the tables is nS bytes. In Strategy F, the total

space occupied by the descriptor tables is:

u(-)bnu(!) bytes

k nJ



- 146 -

Finally, for Strategy G, the storage needed is

u(2-)bin bytes.

B. Size Estimation of the Augmented Cluster Definition Table (CDT)

We recall that logically the augmented CDT consists of cluster defi-

nitions and corresponding secondary memory addresses. We assume that the

augmented CDT is physically implemented as follows. Consider a database

with i directory attributes and D descriptors per attribute. Then the

augmented CDT consists of iD entries. Each entry is formed with a descrip-

tor id followed by a list of cluster definitions and their corresponding

secondary addresses. Now, the number of bytes needed to represent a cluster

is

u(lgD)
8

Here, lg stands for the logarithm of base two. In the ensuing discussion,

we will assume that t bytes are needed to store a track address and that p

bytes are needed to indicate a back-end number. Finally, we assume that the

average cluster size is c tracks, where cl. Thus, the size, X, of each

CDT entry for the centralized strategy is given by

8 + Di-l(u(18--)i + c(t+p))

Thus, the total size of the augmented CDT in the centralized strategy is

given by iDX.

In the case of every other strategy, the size of an augmented CDT entry is

u(!-'-) + ED-(u(l-D)i + t), if cf n ;

8 n 8

u( ) + oi-l((!L)i + E-), otherwise.
8 +8 n

If we denote the size of an augmented CDT entry for all strategies except

the centralized one as Y, the total size of CDT is niDY for all strategies

except the centralized one.

The following table shows the results of our study for the combined size

of both tables. In the sequel, we shall refer to the combined size of the

DDITs and the augmented CDT as the directory size.
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STRATEGY DIRECTORY SIZE

A S + iDX

B S + niDY

C (n+l)S + niDY

D nS + niDY

E nS + niDY

F u(j)bn u(-) + niDY

u(-)bin + niDY
nk

H nS + niDY

C. Interpretation of the Results on Sizes

Let us now proceed to perform some actual calculations on the directory
sizes. We let i, the number of directory attributes, be 5, b, the page size,
be 512 bytes, k, the number of descriptors per page, be 85, t, the number of
bytes in a track address, be 4; and p, the number of bytes to represent a
back-end number, be 1. The number of back-ends is taken from the set {2, 5, 8},
the cluster size c is taken from the {1, 2, 3, 4}, and the number of descrip-

tors D is taken from the set {lO, 15, 20}.

The results are shown in Figure 31. The results in this figure show the
directory sizes in K bytes for various number of descriptors per attribute,

size of a cluster and number of back-ends.

Strategy A has the smallest storage requirements when the size of a cluster
is large. However, it has the largest storage requirements when the size of a
cluster is small. Because of its very large worst case storage requirements,

Strategy A is not preferable for implementation in MDBS. Let us now consider
the storage requirements for the remaining seven strategies. It is clear that
there is no significant difference in the storage requirements for these seven
strategies. In fact, the largest difference in storage requirements among these

seven strategies is .05%.

Since 'there is no 'superior' strategy in terms of storage requirements, the
strategy chosen for implementation in MDBS should be the one which is found to
be superior in terms of performance. Our results have shown that Strategies
E and F were the superior ones in terms of performance. In the following
section, it will be seen that the duplication of descriptors, as in Strategy E,
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NUMBER OF DESCRIPTORS PER ATTRIBUTE = 10
CLUSTER SIZE = 1

Strate-ira
t e

-

Bc-isA B C DEFGH

ends _ __

2 5002.6 4502.7 4507.8 4505.2 4505.2 4503.2 4502.2 4502.2

5 5002.6 4502.8 4515.6 4513.1 4513.1 4502.8 4513.1 4513.1

5002.6 4503.0 4523.4 4520.9 4520.9 4504.5 4520.9 4520.9

NUMBER OF DESCRIPTORS PER ATTRIBUTE = 10
CLUSTER SIZE - 2

Strate- 2
,,gies

Back- A B C D E F G

ends

2 7502.6 9002.7 9007.8 9005.2 9005.2 9003.2 9005.2 9005.2

5 7502.6 9002.8 9015.6 9013.1 9013.1 9002.8 9013.1 9013.1

8 7502.6 9003.0 9023.4 9020.9 9020.9 9004.5 9020.9 9020.9

NUMBER OF DESCRIPTORS PER ATTRIBUTE = 10
CLUSTER SIZE = 3

Strate- T
g es

Back- A B C D E F G H

ends

2 10002.6 11002.7 11007.8 11005.2 11005.2 11003.2 11005.2 11005.2

5 10002.6 13502.8 13515.6 13513.1 13513.1 13502.8 13513.1 13513.1

8 10002.6 13503.0 13523.4 13520.9 13520.9 13504.5 13520.9 13520.9

NUMBER OF DESCRIPTORS PER ATTRIBUTE - 10
CLUSTER SIZE 4

Strate-
ies I

Back- A B C D E F G H

ends

2 12502.6 13002.7 13007.8 13005.2 13005.2 13003.2 13005.2 13005.2

5 12502.6 18002.8 18015.6 18013.0 18013.0 18002.8 18013.0 18013.0

8 12502.6 18003.0 18023.4 18020.9 18020.9 18004.5 18020.9 18020.9

Figure 31. Directory Size (in kbytes) for Various
Directory Management Strategies
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NUMBER OF DESCRIPTORS PER ATTRIBUTE - 15
CLUSTER SIZE - 1
< Strate- f

?ies

Bc- I A C D E F C Hi
ends S _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _

2 37971.4 34174.6 34179.7 34177.1 34177.1 34175.1 34177.1 34177.1

5 37971.4 34174.8 34187.6 34185.0 34185.0 34174.8 34185.0 34185.0

37971.4 3417.3.0 34195.5 34193.0 34193.0 34176.6 34193.0 34193.0

NUMBER OF DESCRIPTORS PER ATTRIBUTE = 15
CLUSTER SIZE = 2
SStrae- 1~ies A

',s C D E F GH
Back- 

I
ends _____ j____ _

2 56955.8 68346.5 68351.6 68349.0 68349.0 68347.0 68349.0 68349.0

5 56955.8 68346.7 68359.5 68456.9 68356.9 68346.7 68356.9 68356.9

8 56955.8 68346.9 68367.4 68364.8 68364.8 68348.4 68364.8 68364.8

NU MBER OF DESCRIPTORS PER ATTRIBUTE = 15
CLUSTER SIZE = 3

Strate- 1
ak s A B C D E F G H

Back-'
ends .

2 75940.1 83524.0 83539.1 83536.5 83536.5 83534.5 83536.5 83536.5

5 75Q40.1 102518.6 102531.4 102528.8 102528.8 102518.6 j102528.8 1 102528.8

8 75940.1 10253.8.8 1102539.3 102536.7 102536.7 102520.3 1102536.7 102536.7

N BER OF DESCRIPTORS PER ATTRIBUTE - 15
CLUSTER SIZE = 4

Strate- T

Back- A B D
ends _ _ _ _ _ _ I . _ _ _

2 94924.5 98721.5 98726.6 98724.0 98724.0 98722.0 98724.0 98724.0

5 94924.5 136690.4 136703.2 136700.7 136700.7 136690.4 136700.7 136700.7

8 94924.5 136690.7 136711.1 136708.6 1136708.6 136692.2 136708.6 136708.6

Figure 31. (Contd.)
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NUMBER OF DESCRIPTORS PER ATTRIBUTE 20
CLUSTER SIZE = 1

Strate-
gies

Back- A B C D E F G H

ends

2 160002.7 144002.8 144007.9 144005.3 144005.3 144003.3 144005.3 144005.3

5 160002.7 144003.1 144015.9 144013.3 144013.3 144003.1 144013.3 144013.3

8 160002.7 144003.4 144023.8 144021.3 144021.3 144004.9 144021.3 144021.3

NLBER OF DESCRIPTORS PER ATTRIBUTE = 20
CLUSTER SIZE 2- 2

Strate-
gies

Back- A B C D E F G H

ends

2 240002.7 288002.8 288007.9 288005.3 288005.3 288003.3 288005.3 288005.3

5 240002.7 288003.1 288015.9 288013,3 288013.3 288003.1 288013.3 288013.3

8 240002.7 288003.4 288023.8 288021.3 288021.3 288004.9 288021.3 288021.3

NUMBER OF DESCRIPTORS PER ATTRIBUTE = 20
CLUSTER SIZE - 3

,yies
XBack- A B C D E F G H

end s

2 320002.7 352002.8 352007.9 352005.3 352005.3 352003.3 352005.3 352005.3

5 320002.7 432003.1 432015.9 432013.3 432013.3 432003.1 432013.3 432013.3

8 320002.7 432003.4 432023.8 432021.3 432021.3 432004.9 432021.3 432021.3

NUMBER OF DESCRIPTORS PER ATTRIBUTE = 20
CLUSTER SIZE - 4

Strate- r T
gies

Back- A B C D E F G H
'end s

2 400002.7 1416002.8 416007.9 416005.3 416005.3 416003.3 416005.3 416005.3

5 400002.7 576003.1 576015.9 576013.3 576013.3 576003.1 576013.3 576013.3

8 400002.7 576003.4 576023.8 576021.3 576021.3 576004.9 576021.3 576021.3

Figure 31. (Contd.)
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is necessary for efficient handling of some kinds of update requests. Thus,

we choose to adopt Strategy E f or direc:ory management in MDBS.

4.3 The Entire Process of Request Execution

In the previous section, we describied the process of directory management

in MDBS. In this final section, we shall discuss the entire sequence of actions

performed by MDBS in processing the fourv different types of requests. We shall

discuss each type of request, in turn.

4.3.1 Executing a Retrieve Request

We recall that the syntax of a retrieve request in MDBS is as follows.

RETRIEVE Query Target-list [BY Attribute][WTTH Pointer]

The sequence of actions taken by XDBS in order to execute a retrieve has al-

ready been described in some detail in an earlier section. We shall repeat

some of the discussion here, for completeness.

The controller will first parse the request and determine that it is a

retrieve request. Next, the controller will broadcast the request to all the

back-ends. The back-ends will perform descriptor processing and address gener-

ation under Strategy E as described in the previous.section. Upon completion,

each back-end has a list of secondary memory addresses of the tracks which

contain the relevant records. These tracks are accessed by the back-end. The

query in the request is used to select the records from these tracks. First,

the records satisfying the query are selected. If a BY-clause is specified in

the retrieve request, the selected records are grouped by the values of the at-

tribute in the BY-clause. If no BY-clause is specified in the retrieve request,

all the selected records are treated as a single group. Next, for each group

of selected records, the values of all attributes in the target-list are ex-

tracted from the records of the group. If no aggregate operator is specified

on an attribute in the target-list, the extracted values of the group

are returned to the controller. If an aggregate operator is specified on an

attribute in the target-list, some computation is performed on all the attri-

bute values in the records of the group and a single aggregate value is re-

turned to the controller. This completes the actions performed by a back-end

on each group of selected records. If a WITH-clause is specified in the re-

tri4eve request, the secondary memory addresses of all selected records must
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also be sent to the controller by each back-end...

The controller will wait for responses from all the back-encs. Upon re-

ceiving all the responses (i.e., attribute values, aggregate values or ad-

dresses) from all back-ends, the controller will forward these responses to

the user that issued the retrieve request. This completes the execution of

the retrieve request.

4.3.2 Executing a Delete Request

As we recall, the syntax of a delete request is

DELETE Query

The execution of this request in MDBS is similar to the execution of a re-

trieve request. The controller will first parse the request and determine

that it is a delete request. Next, the controller will broadcast the request

to all back-ends. The back-ends will perform descriptor processing and ad-

dress generation under Strategy E. Upon completion, each back-end hak a list

of secondary memory addresses of tracks which contain relevant records. Re-

cords of these tracks are retrieved from the secondary memory by respective back-

ends. The query in the delete request is used to select the records which are

to be deleted. These selected records are then marked for deletion. The track

space occupied by the marked records is not immediately recovered. Such re-

covery of space will be done during database reorganization time (see Chapter

7). After the records are marked, the marked records are written back to the

same tracks by each back-end. If all the records in a track are marked for

deletion, the address of this track is removed from all entries in which it

appears in the augmented cluster definition table (CDT). Finally, each back-

end will send an acknowledgement to the controller to indicate that it has

finished executing the delete request. Upon receiving the acknowledgements

from all the back-ends, the controller will inform the user or user program

that the delete request has successfully been completed.

4.3.3. Executing an Update Request

The syntax of an update request in MDBS Ls as follows

UPDATE Query Modifier

We recall that the modifier in an update request specifies the new value to

be taken by the attribute being modified and that it may be one of the types
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described below.
Type-O <attribute - constant>
Type-I <attribute - f(attribute)>
Type-lI : <attribute = f(attribute-l)>
Type-Ill : <attribute = f(attribute-1) of Query>
Type-IV : <attribute - f(attribute-l) of Pointer>

In the simplest case, a modifier indicates the new value to be taken by the

attribute being modified (i.e., type-O). In the more involved cases, the mo-

difiers specify the new value to be taken by the attribute being modified as

a function f of the 'old' value of that attribute (i.e., type-T) or values of

some other attribute of the record to be updated (eg., types II, III or IV).

The other attribute is called the base attribute (i.e.,attribute-l in the

specification). We will first describe the execution of an update request

containing modifiers of types 0, I and II. We will then describe the ex-

ecution of an update request containing modifiers of type-ITT or IV.

An update request containing a modifier of types 0, I or II is broad-

cast by the controller to all the back-ends. The back-ends will perform

descriptor processing and address generation under Strategy E. Afterwards,

each back-end has a list of secondary memory addresses of the tracks contain-

ing the relevant records. These tracks are accessed by respective back-

ends and the records satisfying the query are selected from these tracks.

These are the records to be updated.

Each of these records is updated using the modifier in the update request.

If the modifier is of type-0, the new value to be taken by the attribute being

modified in a record to be updated is provided in thpe modifier. If the modifier

is of type-l, the new value to be taken by the attribute (being modified) in a

record (to be updated) is computed as a function (specified in the modifier)

of the value of the same attribute. Finally, if the modifier is of type-II,

the new value to be taken by the attribute (being modified) in a record (to

be updated) is computed as a function f (specified in the modifier) of the

value of the base attribute in that record.

Due to its change in attribute values, an updated re. lrd may remain in

the name cluster to which it (more precisely, its pre-updated version) be-

longed or it may now belong to a different cluster. In the latter case, a

record is said to change cluster. Recall that a cluster is a group of re-

cords such that every record in the cluster is derived from the same set of

descriptors. Thus, an updated record will belong to a different cluster only

if the set of descriptors from which it is derived is different from the set
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of descriptors from which the pre-updated version was derived. If the attri-

bute being modified in an updated record is not a directory attribute, the

updated record continues to be derived from the same set of descriptors, since

only directory attributes affect the descriptors. Hence, the updated record

does not change cluster. If the attribute being modified is a directory attri-

bute, an updated record may change cluster. Consider, for example, a database

with the descriptors as depicted in Figure 14. Consider also the following

record

(<Location,NAPA>, <Number,32123>, <Balance,50>).

This record is clearly derived from the descriptor set {D2, D3, D5} (see

Figure 14 again). After updating the value of the Balance which is a directory

attribute in this record, the updated record is now shown below.

(<Location,NAPA>, <Number,32123>, <Balance,lO0>)

By the way, this update uses type 0 modifier. The updated record is also de-

rived from the same descriptor set {D2, D3, D5}. Hence, the record does not

change cluster. On the other hand, if the value of the Balance is changed to

600, the newly updated record is not derived from the descriptor set {D2, D3,

D5}. Instead, it is derived from the set {D2, D4, D5}. Hence, the record

changes cluster.

In order to check whether or not a newly updated record changes cluster,

it is necessary for a back-end to search the descriptor-to-descriptor-id table

(DDIT). To facilitate such search, we have decided that each back-end should

replicate the descriptors for all the directory attributes in its secondary

memory. This is an additional reason that we decided on Strategy E. For

example, if Strategy F were employed, a back-end would need to access descrip-

tors placed at other back-ends in order to determine clusters of updated re-

cords. Consequently, bus traffic will be excessive which would create the

so-called control message problem.

Finally, each back-end will send an acknowledgement to the controller to

indicate that it has finished processing the update request. When it has

received acknowledgements from all back-ends, the controller will output a

message to the user to signal successful completion of the update request.

This completes the processing of an update request containing modifiers of

type-O, I or II.

Now, let us describe the execution of an update request containing a

type-Il or IV modifier. In this case, another record must first be retrieved



- 155 -

by MDBS on the basis of a user-provided query or pointer. After the re-

cord is retrieved, the controller will extract the base attribute value v

from the retrieved record. It will then compute the function f (specified

in the type-Ill or IV modifier) on the value v and thus obtain a new value

v'. The controller will then form a type-O modifier of the form
<a -vl>

where a is the attribute being modified, i.e., the same attribute appeared to

the left of the equality sign in the type-Ill or IV modifier. The original

type-Ill or IV modifier in the update request is now replaced with this neuly

created type-O modifier. In other words, MDBS converts an update request con-

taining a type-Ill or IV modifier to an update request containing a type-O

modifier. This update request containing a type-O modifier may now be exe-

cuted in the same manner described previously.

4.3.4 Executing an Insert Request

The syntax of an insert request in MDBS is

INSERT Record

The controller will first parse the request and determine that it is an insert

request. Next, the controller will broadcast the request to all the back-

ends. The back-ends will perform descriptor processing under Strategy E. The

descriptor search phase under Strategy E for record insertion is more spe-

cialized than the descriptor search phase under the same strategy for othet

requests. For example, for the retrieve request, the descriptor search

phase involves parallel descriptor processing of multiple predicates of a

given query conjunction. For the insert request, the descriptor search phase

merely involves parallel descriptor processing of multiple attribute-value

pairs (i.e., keywords) of the record to be inserted. The specialized descrip-

tor processing for record insertion tends to simplify the processing effort.

More specifically, if the record for insertion contains x directory attribu-

tes, each back-end will determine the corresponding descriptors for - attri-
n

bute-value pairs. At the end of the descriptor search phase, the single clus-

ter to which the record to be inserted is known to the back-end(s) whose se-

condary memory(memories) has(have) been accommodating the cluster. The reason

that more than one back-end may be involved in accommodating the cluster in

consideration is that the cluster being sufficiently large has been evenly

distributed by the data placement strategy over several back-ends' secondary
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memories at the database-creation time. Consequently, MDBS must decide

which back-end's secondary memory is to be used for accommodating the

new record.

The address generation phase for record insertion requires an addi-

tional step under Strategy E. Instead of generating the secondary memory

address immediately upon the completion of descriptor processing, each

back-end sends at most one cluster id of the corresponding descriptors to

the controller. By consulting a cluster-id-to-next-back-end table (CINBT),

the controller can select the secondary memory of a specific back-end for

record insertion. The CINBT which is depicted in Figure 32 is created for

the controller at the database-creation time by the data placement strategy.

Upon receiving a message from the controller, the specific back-end will

then continue into the address generation phase by producing a secondary

address for record insertion.

Thus, in this chapter, we have completely described the execution of

the four types of requests that may be issued to MDBS.
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This table is stored at the controller to be used during
record insert and database re-organization.

Next Back-end Number of
Cluster Id for Insertion Tracks*

* Information in this and additional columns will be used

for database re-organization. (See Chapter 7 for
re-organization)

Figure 32. The Cluster-Id-To-Next-Back-end Table (CINBT)
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APPENIX A: FORMAL SPECIFICATION OF DML

The following is the BNF syntax f or the DM. of Chapter 3. Square
brackets [ I are used to indicate optional constructs.

Predicate . (attribute rel-op value)
attribute * char-string
attribute-being-modified : attribute
base-attribute : attribute
rel-op
value . stringinuinberifloat
Conjunct .= (Predicate)J(Conjunct A Predicate)
Query . (Conjunct)i(Query V Conjunct)
Stat .=AVGIMAXIMINISU'llCOUNT

list-el .=Stat (attribute)
list .=attributellist-elIlist,attributellist,list-e1

Target-list .= (list)
Attrib-val-pair :=<attribute,value>
Half-record .- Attr ib-val-pair IHalf-record, Attr ib-val-pa ir
Record . (Half-record)
Pointer . number
Modifier . type-Oi type-Iltype-ilItype-iIltype-tV
type-O .=<attribute-being-mod if ied-value>
type-I * <attribute-being-modified=exprl>
type-tI <attribute-being-mod ified-expr2>
type-III <attribute-being-mod ified-expr2 of Query>
type-IV .=<attribute-being-modified-expr2 of PoinLer>
Request .=InsertiDelete UpdatelRetrieve
Insert . INSERT Record
Delete . DELETE Query
Update . UPDATE Query Modifier
Retrieve . RETRIEVE Query Target-list [BY Attribute]

(WITH Pointer]
uc-letter UAIBJCI....IZ

string . uc-letterluc-letter string
lc-letter UalblcI....Iz

char-string Uuc-letterichar-string lc-letter
digit 0111l213141516171819
nmber * digit digit number
float .=number. number
add-op* +-
mult-op. *1
exprl . arith-termljexprl add-op arith-terml
arith-terml .- arith-factorlfarith-terml mult-op arith-factorl
arith-factorl : attribute-being-modified inumber
expr2 * arith-term2(expr2 add-op arith-term2
arith-term2 :a arith-factor2larith-term2 mult-op arith-factor2
arith-factor2 Ubase-attributeinumber
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APPENDIX B: PROOF THAT A RECORD BELONGS TO ONE AND ONLY ONE CLUSTER

Consider a record R consisting of the directory keywords K, K 2 ,... K is
where Ki contains directory attribute Ai. If n is zero, then tie record R
contains no directory keywords. Hence, it is derived from the cluster
defined by the empty set of descriptors and this is the only cluster it is
derived from. Next, let us consider the case when n is non-zero. For pur--
poses of contradiction, let a record R belong to two different clusters X
and Y. Consider directory keyword K i in R. Since R belongs to cluster X,
X must contain a descriptor X,, from which K 1 is derived. Similarly, X mus:
contain a descriptor X from which K2 is derived. Therefore, X is defined
by the descriptor set {X I , X2, ... Xn}. Similarly, Y is defined by the de-
scriptor set {Y , Y2, ... , Yn}. Now, by the definition of the Xis and the
Yis , the following n statements must be true.

(1) K1 is derived from both X1 and Y,.
(2) K2 is derived from both X2 and Y2 "

(n) Kn is derived from both Xn and Yn-

Using the statement (1) above, we shall show that X, = Y,.

The first point to be noted is that X1 and Y1 must both contain A1,
since, K I contains Al. Let K I be of the form <AI,V>. Now, there are'
three possibilities for X, as below.

(a) X1 is a type-A descriptor of the form (L <- A n U1 ).(b) X1 is a type-B descriptor of the form (Al = VI).
(c) X1 is a type-C descriptor of the form Al.

Similarly, there are three possibilities for Y1 as below.

(a) Y1 is a type-A descriptor of the form (L2 f- A, !E U 2).
(b) Y1 is a type-B descriptor of the form (A1 - V2 ).
(c) Yi is a type-C descriptor of the form Al.

Thus, there are nine possibilities for the combination of X and Y.. We
shall consider all of the nine cases, in turn.

Case 1: X1 is (L1i 5 Al n U1 ).
Y1 is (L2 :- A2 ! U2).

Now, since K, is derived from X1 , V lies between Ll and U1 . Also,
since K1 is derived from Y1 , V lies between L, and TJ2 . Rulez 1 of the
rules for forming descriptors (see Chapter 3) states that the ranges
specified in type-A descriptors for a given attribute must be mutually
exclusive. Since the ranges of X, and Y, are not mutually exclusive,
they cannot be two different descriptors. Hence, they must be the
same descriptor. Thus, X1 M Y 1 "

Case 2: X1 is (L1 15 A1 f U1 )
Yl is (A, V2).

Since K1 is derived from Xl, V lies between Ll and Ul. Since K, is
is derived from Y1 , V 1 must be equal to V2 . Thus, V2 lies between
Ll and Ul. However, this is in violation of Rule 2 for forming des-
criptors, since, there is a type-B descriptor whose value is enclosed
in the range of a type-A descriptor. Hence, it is not possible that
X, is of type-A and Yl is of type-B.
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Case 3: X, is (L1 5 A1 ! U1 ).
Y1 is A,.

This is a clear violation of Rule 3 for forming descriptors which
states that an attribute that appears in a type-C descriptor cannot
appear also in a type-A or type-B descriptor. Thus, this case is
not possible.

Case 4: X1 is (A1 M VI).
YI is (L2 f A1 : U2).

Since K I is derived from X1, V must be equal to V1 . However, since
K is also derived from Y!, V, and hence V1. must lie between L2 and12
U2. This is a violation of Rule 2 for forming descriptors. Hence,
this case is not possible.

Case 5: X1 is (A1 = V1 ).
Yl is (A, = V2 ).

Since K1 is derived from Xl, V must be equal to V1 . But, since K1
is derived from Y, also, V is also equal to V2 . Hence, V1 = V2.
Hence, X1 = Y1 "

Case 6: X, is (A1 = V1 )
YI is A1 .

This is a clear violation of Rule 3 for forming descriptors since an
attribute that appears in a type-C descriptor cannot also appear in
in a type-A descriptor. Hence, this case is not possible.

Case 7: X, is Al.
YI is (L2 : A, < U2 ).

This is again a violation of Rule 3 for forming descriptors and,
hence, this case is not possible.

Case 8: X1 is A1 .
Yl is (A, = V2).

Once again, we have a violation of Rule 3 for forming descriptors.
Hence, this case is not possible.

Case 9: X1 is A1 .
Y, is A1 .

Clearly, =Y

Out of all the nine cases considered, only three were found to be possible.
In each of these three cases, X1 was found to be equal to Y1 " Thus, X1 = Y1 "

We may similarly use statement (2) to show that X2 is equal to Y2,
statement (3) to show that X 3 is equal to Y 3, and so on. Thus, X- Y. Hence,
R does not belong to two different clusters. Hence, a record can belong to
one and only one cluster.



1 ~57 -

APPENDIX C: DIRECTORY MANAGEMENT ALGORITHMS

Here, we will describe two algorithms. The first algorithm determines
the cluster to which a record for insertion belongs and it also determines
the secondary memory addresses of this cluster. This algorithm is called the
directory management algorithm for an insert request. The algorithm is pre-
sented as two different procedures because it proceeds in two distinct phases
called the descriptor search phase and the address generation phase.

The second algorithm describes how the corresponding set of clusters
(and their addresses) for the query in a non-insert request are determined.
This algorithm is called the directory management algorithm for a non-insert
request. Once again, the algorithm is presented as two different procedures.

Three tables are used in these algorithms. The first table is called
the pointer table (PT). It has as many entries as there are directory attri-
butes. Each entry in the PT consists of two fields. The first field contains
a directory attribute and the second field contains a pointer to another table
called the descriptor-to-descriptor-id table (DDIT). The pointer in the se-
cond field of an entry in PT points to the location in the DDIT where the
descriptors of the attribute in the first field of the PT entry are stored.

The DDIT has as many entries as there are descriptors. Each entry con-
sists of two fields. The first field contains a descriptor and the second
field contains a descriptor id. A view of a DDIT is shown in Figure 14.

Finally, there is a table called the cluster definition table (CDT).
There are as many entries in the CDT as there are clusters in the database.
Each entry in the CDT consists of three fields. These contain a cluster
number, a cluster definition (as a descriptor set) and one or more secondarv
memory addresses, respectively. The secondary memory addresses in the third
field are of the cluster in the first field. A view of a CDT is shown in
Figure 15.
Physically, we assume that the CDT is implemented as follows. Consider a
database with i directory attributes and D descriptors per attributes. Then,
the CDT consists of iD entries. Each entry is formed with a descriptor id
followed by a list of cluster definitions and their corresponding secondary
memory addresses.

1. Directory Management for an Insert Request

We present two procedures below. The first one is executed during the
descriptors search phase and the second one is executed during the address
generation phase.

PROCEDURE DESCRIPTOR SEARCH

Purpose: Given a record for insertion, it determines the corresponding
descriptor for each attribute-value pair in the record.

Input: The record to be inserted. Let there be n attribute-value
pairs in the record for insertion. Thus, the record for
insertion is (<lv1,< PV2,..., <A ,~Vn >).

Output: A set of k descriptors, where k is the number of directory
attributes. These descriptors are output in the array
D(l), D(2), ... , D(k).
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Step 1: Set i-l. Set j=1.

Step 2: Consider the attribute-value pair <Ai,Vi>. Follow the
pointer in PT, Pi, to the location in DDIT where the des-
criptors of Ai are stored. Let m P i. Set Pi+l to the
next pointer in PT after Pi. If no pointer Pi, Is found,
go to Step 4.

Step 3: Check if <A Vi> can be derived from the m-th descriptor
of DDIT. IfAso, set D(j) - m-th descriptor of DDIT, j = j+l,
and go to Step 4. Else, go to step 5.

Step 4: i - i+l. If i>n, then go to Step 6. Else, go to Step 2.

Step 5: Set m = m+l. If m- Pi+ go to Step 3. Else, set
D(j)-null descriptor on Ai, j j+1 and go to Step 4.

Step 6: Output D(l), D(2), ..., D(k). Terminate.

PROCEDURE ADDRESS GENERATE

Purpose: Generates the cluster to which the record for insertion
belongs and its secondary memory address or addresses.

Input: D(l), D(2), .... D(k) which was output from the previous
algorithm.

Output: The cluster to which the record belongs and the secondary
memory addresses, of this cluster.

Step 1: Consider the non-null descriptors in D(l), D(2), ..., D(k)
and let these be ND1 , ND2, ... ND_. Let the attributes in
the non-null descriptors be AT1 , RT29 ..., ATp. Let there
be di descriptors in the database for attribute ATi. Choose
that attribute, AT., in AT,, AT2, . ATp with the maximum

number of descriptors on it, dj.

Step 2: Access the CDT entry for attribute AT and descriptor NDj.
Search this entry until the cluster defined by D(1), D(23,...,
D(k) is encountered.

Step 3: Output the cluster number and its corresponding secondary
addresses as stored in the entry. Terminate.

2. Directory Management for a Non-Insert Request

Once again, we shall present two procedures. The first one is executed
by MDBS during the descriptors search phase and the second one is executed
during the address generation phase.

PROCEDURE DESCRIPTOR SEARCH

Purpose: Given a non-insert request with a query, it determines the
corresponding descriptor for each predicate in the query.

T.'?ut: The query in disjunctive normal form. Let there be i con-
junctions and let there be P4 predicates in the J-th con-
junction.



-169 -

Output: A two-dimensional array D in which D(x,y) contains the
corresponding dewcriptor for the y-th predicate of the x-th
conjunction.

Step 1: Set m = . [At any point, the m-th conjunction is being examined.
Set n- 1. [At any point, the n-th predicate of the m-th con-
junction is being examined.] Set k= l. Let the array D be
initially empty.

Step 2: Let the attribute in the n-th predicate of the m-th conjunction
be A and let its value be V. Use PT to determine the location
in DDIT where the descriptors corresponding to A are stored.
Set P and START to this value. Set END to the location in DDIT
where the descriptors corresponding to A end.

Step 3: Check if <A,V> can be derived from the p-th descriptor in DDIT.
If so, set D(m,n) to the p-th descriptor of DDIT and go to
Step 4. Else, set p=p+l. If p!:END, go to Step 3. Else,
go to Step 4.

Step 4: Set n=n+l. If n> Pm, then go to Step 5. Else, go to Step 2.

Step 5: Set m m+l. If m> i, then stop. Else, set n=l and go to
Step 2.

PROCEDURE ADDRESS GENERATE

Purpose: Generates the clusters which will satisfy a user request and
their secondary memory addresses.

Input: The two-dimensional array D from the previous procedure and

the user query of i conjunctions.

Output: The clusters which will satisfy the user request and their

secondary memory addresses.

Step 1: Set m= I [At any time, we examine the m-th conjunction]. Let
query conjunction m have Pm predicates.

Step 2: Set n=Pm. Consider the descriptors D(m,l), D(m,2),
D(m,n). Let the attributes in these descriptors be AT , AT2
..., ATn. Also, let D(m,i), 15 isn, be the xi-th descriptor
on ,ATi . Also, let there be di descriptors in all, in the data-
base, on ATi.

Step 3: Associate a count Ci with each ATi as follows. If the i-th
predicate of the m-th conjunction contains the operator
Ci = 1/di. If the i-th predicate of the m-th conjunction
contains the operator '<' or '5', then set Ci - xi/di. Else,
set Ci - (di - xi)/di.

Step 4: Choose the ATi with minimum Ci. Access the entry in the CDT
for attribute ATi and descriptor D(m,i). If the i-th predicate
of the m-th conjunction is '<' or '!5', then also search the
entries corresponding to attribute ATi and all descriptors 'less
than' D(m,i). Else, if the i-th predicate of the m-th conjunction
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is '>' or '_', then also search the entries corresponding
to attribute ATi and all descriptors 'greater than' D(m,i).

Step 5: For each cluster encountered in searching these entries,
do Step 6.

Step 6: Set p- 1. Consider attribute AT and the p-th predicate of
the i-th conjunction. If the predicate is '-', then check
to see if the cluster definition includes descriptor D(m,p).
If the predicate is '<', or 'V, then check to see if the
cluster definition includes descriptor D(m,p) or any des-
criptor 'less than' D(m,p). Otherwise, check to see if the
cluster definition includes descriptor D(m,p) or any des-
criptor 'greater than' D(m,p). If the checks fail at any
point, then the cluster being examined does not satisfy the
user request. Otherwise, set p- p+ 1. If p> n, then output
the cluster being examined and its corresponding address (or
addresses). Else, go to Step 6.

Step 7: Set m-m+l. If m> i, Terminate. Else, go to Step 2.
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APPENDIX D: ALGORITHM FOR BINARY SEARCH OF DESCRIPTORS

In this appendix, we shall calculate the time for a binary search of
N descriptors. Let

tpr : time taken to perform an arithmetic operation
td : time taken to read a descriptor
N : number of descriptors
K : descriptor being searched for

g(a) : the nearest integer greater than or equal to a
h(a) : the nearest integer less than or equal to a

Ig : logarithm of the base 2

Let the N descriptors we are searching be K , K2, ... K. Then, the
algorithm for binary search of these N descriptors is as follows.

1. i-g(N/2), m-g(N/2)

2. If K<Ki go to ?
If K>Ki go to 4
If K- Ki success

3. If m-C failure
else i, -i-g(m/2)

m ,h(m/2)
go to 2

4. If m-C failure
else i.-i+g(m/2)

m:- h(m/2)
gc to 2

From the above, the total time to do binary search on N descriptors is

2tpr + lg(N(td + 4tpr))
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APPENDIX E: I/0 SUBMODEL FOR DISK SYSTEM

The I/0 submodel consisting of M drive queues and one channel queue is
shown in Figure 20. The inter-arrival distribution is chosen as exponential
with L as the mean rate at which requests are received by the disk system.
The inter-arrival distribution of requests to each drive queue is also ex-
ponential with a mean request rate of L/M. Let us analyze the drive queues
and the channel queue, in turn.

Analyzing a Drive Queue - The drive queue service time is the seek time. The
seek time of a disk drive is approximated by an equation of the form (a+ by),
where a and b are constants and y is the number of cylinders traversed during
the seek. We let N be the total number of cylinders in a disk drive. Then,

Mean service time = Mean seek time

N 2
- Z (a+by)(N - 2)

y-iN

N N N2a 2b 2b 2
2a -- y + ZE y -N7 - y2

y-1 y=1 y=l

a bN b
N 3 3N

Second moment of service time

NE (a2 + b2y2 + 2aby)(- -2)

y=I N N

= a2  a2 +b 2N2  b2 +2abN 2ab

N 6 6 3 3N

Variance of service time

= Second moment of service time - (Mean service time) 2

b2 N2  b2  a2  b 2  2ab a2  2ab= 18 + r"8" - -N 9N - 3NT  N- 3
18 8 ~ T~N 3

Analyzing the Channel Queue - It is easy to see that

Mean service time = disk rotation time = d

Variance of service time - 0

1
Mean Inter-arrival time - LL

Variance of Inter-arrival time -

The channel queue is analyzed as an M/G/l queue (Klei75] whose waiting time

is
Ld

2

2(1-Ld)
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Let total time in the channel system be the sum of the channel wait and
service times. Let

=i channel wait time

R- channel service timie

9 -mean time i~n channel

s7- secondi moment of t~me in channel

var(s') - -7 (7)2 variance of time in channel

Then,

5- (w +X) ;7

Ld2

2(1-14)

(W (+X) 2 =wT+7+2i

= Z +d (1-L ........... (1)

L~d4 Ld3

W7 2(1-Ld)2 +3(l-Ld)

Substituting w7 in (1),

L 2 d4 Ld3  
2 _+____

2(l-Ld)T7 3(1-Uj) + (1-Ld)

Finally,

var(s) - (3)2

______ + Ld
3

=4(1-Ld)
2 +3(1-14)



-174 -

APPENDIX F: ADDRESS GENERATION TIMES

The time taken for address generation is really the time taken to
search the augmented CDT for the addresses of the corresponding set of
clusters. We assume that the augmented CDT is physically implemented as
follows. Consider a database with i directory attributes and D descrip-
tors per attribute. Then, the augmented CDT consists of iD entries.
Each entry is formed with a descriptor id followed by a list of cluster
definitions and their corresponding secondary addresses. Let

i : number of directory attributes
D : number of descriptors per attribute
t : number of bytes needed to store a track address
p number of bytes needed to indicate a back-end number
c : size of a cluster in tracks

lg : logarithm to base 2
u(x) : nearest integer greater than or equal to x

n : number of back-ends
s : track size
z : time to access a track from secondary mmory
x : size of a CDT entry in the centralized strategy

adgen : time for address generation in the centralized strategy
y : size of a CDT entry in the other strategies

adgenl : time for address generation in the other strategies

The size, x, of each CDT entry in the centralized strategy is

u(11-) + Di-l((u!)i + c(t+p))8 8
So,

adgen = --s

Similarly, the size y of each CDT entry in the remaining strategies is

u8 ) + -n-- (u(8 )i+t), if c.n;

i-l lgD ct
u(!-) + Di-(u( 8 )i + -), otherwise

Finally,

adgenl =y
s
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